

Basler Cameras

PYLON SDK SAMPLES MANUAL
Document Number: AW001488
Version: 04 Language: 000 (English)
Release Date: 2 February 2021
Software Version: 6.2

Contacting Basler Support Worldwide

Europe, Middle East, Africa

Basler AG
An der Strusbek 60–62
22926 Ahrensburg
Germany

Tel. +49 4102 463 515
Fax +49 4102 463 599

support.europe@baslerweb.com

The Americas

Basler, Inc.
855 Springdale Drive, Suite 203
Exton, PA 19341
USA

Tel. +1 610 280 0171
Fax +1 610 280 7608

support.usa@baslerweb.com

Asia-Pacific

Basler Asia Pte. Ltd.
35 Marsiling Industrial Estate Road 3
#05–06
Singapore 739257

Tel. +65 6367 1355
Fax +65 6367 1255

support.asia@baslerweb.com

www.baslerweb.com

All material in this publication is subject to change without notice and is copyright
Basler AG.

AW00148804000

Table of Contents

1 Overview ... 1

2 C++ Samples .. 2

2.1 DeviceRemovalHandling ... 2
2.2 Grab ... 3
2.3 Grab_CameraEvents ... 5
2.4 Grab_ChunkImage .. 7
2.5 Grab_MultiCast .. 8
2.6 Grab_MultipleCameras .. 11
2.7 Grab_Strategies ... 12
2.8 Grab_UsingActionCommand ... 14
2.9 Grab_UsingBufferFactory .. 16
2.10 Grab_UsingExposureEndEvent ... 17
2.11 Grab_UsingGrabLoopThread .. 19
2.12 Grab_UsingSequencer .. 21
2.13 GUI_ImageWindow .. 22
2.14 GUI_Sample .. 24
2.15 GUI_SampleMultiCam ... 26
2.16 ParametrizeCamera_AutoFunctions ... 28
2.17 ParametrizeCamera_Configurations ... 29
2.18 ParametrizeCamera_GenericParameterAccess ... 31
2.19 ParametrizeCamera_LoadAndSave .. 33
2.20 ParametrizeCamera_LookupTable.. 34
2.21 ParametrizeCamera_NativeParameterAccess ... 35
2.22 ParametrizeCamera_SerialCommunication .. 37
2.23 ParametrizeCamera_Shading ... 38
2.24 ParametrizeCamera_UserSets .. 39
2.25 Utility_GrabAvi ... 40
2.26 Utility_GrabVideo ... 41
2.27 Utility_Image .. 42
2.28 Utility_ImageDecompressor .. 44
2.29 Utility_ImageFormatConverter ... 45
2.30 Utility_ImageLoadAndSave ... 47
2.31 Utility_InstantInterface ... 49
2.32 Utility_IpConfig ... 50

3 C Samples .. 51

3.1 ActionCommands .. 51
3.2 BconAdapterSample .. 54
3.3 Chunks ... 55
3.4 Events .. 57
3.5 GenApiParam .. 60

AW00148804000

3.6 GrabTwoCameras ... 62
3.7 ImageDecompressor ... 64
3.8 OverlappedGrab .. 66
3.9 ParametrizeCamera ... 68
3.10 SimpleGrab .. 70
3.11 SurpriseRemoval ... 72

4 .NET Samples ... 74

4.1 DeviceRemovalHandling ... 74
4.2 Grab ... 76
4.3 Grab_CameraEvents ... 78
4.4 Grab_ChunkImage .. 80
4.5 Grab_MultiCast .. 82
4.6 Grab_Strategies ... 84
4.7 Grab_UsingActionCommand ... 85
4.8 Grab_UsingBufferFactory .. 86
4.9 Grab_UsingExposureEndEvent ... 87
4.10 Grab_UsingGrabLoopThread .. 88
4.11 Grab_UsingSequencer .. 90
4.12 GUISampleMultiCam ... 92
4.13 ParametrizeCamera ... 94
4.14 ParametrizeCamera_AutoFunctions ... 95
4.15 ParametrizeCamera_AutomaticImageAdjustment .. 97
4.16 ParametrizeCamera_Configurations ... 99
4.17 ParametrizeCamera_LoadAndSave .. 100
4.18 ParametrizeCamera_LookupTable.. 101
4.19 ParametrizeCamera_UserSets .. 102
4.20 PylonLiveView.. 103
4.21 Utility_AnnounceRemoteDevice .. 105
4.22 Utility_GrabAvi ... 106
4.23 Utility_GrabVideo ... 107
4.24 Utility_ImageDecompressor .. 108
4.25 Utility_IpConfig ... 109
4.26 VBGrab .. 110
4.27 VBParametrizeCamera .. 112

AW00148804000 Overview

pylon SDK Samples Manual 1

1 Overview

The pylon Camera Software Suite includes an SDK with three APIs:

• pylon API for C++ (Windows, Linux, and macOS)

• pylon API for C (Windows and Linux)

• pylon API for .NET languages, e.g., C# and VB.NET (Windows only)

Along with the APIs, the pylon Camera Software Suite also includes a set of sample programs and
documentation.

This manual describes the SDK sample programs.

• On Windows operating systems, the source code for the samples can be found here:
<pylon installation directory>\Basler\pylon 6\Development\Samples
Example: C:\Program Files\Basler\pylon 6\Development\Samples

• On Linux or macOS operating systems, the source code for the samples can be copied
from the archive to any location on the target computer.

For more information about programming using the pylon API, refer to the Programmer’s Guide
and Reference Documentation documents delivered with the pylon Camera Software Suite.

AW00148804000 C++ Samples

pylon SDK Samples Manual 2

2 C++ Samples

2.1 DeviceRemovalHandling

This sample demonstrates how to detect the removal of a camera device. It also shows you how to
reconnect to a removed device.

Note: If you build this sample in debug mode and run it using a GigE camera device, pylon will set
the heartbeat timeout to 5 minutes. This is done to allow debugging and single-stepping without
losing the camera connection due to missing heartbeats. However, with this setting, it would take 5
minutes for the application to notice that a GigE device has been disconnected. As a workaround,
the heartbeat timeout is set to 1000 ms.

Code

The CTlFactory class is used to create a generic transport layer.

The CInstantCamera class is used to create an Instant Camera object with the first camera device
found.

The CHeartbeatHelper class is used to set the HeartbeatTimeout to an appropriate value.

The CSampleConfigurationEventHandler is used to handle device removal events.

Applicable Interfaces

GigE Vision, USB3 Vision, Camera Link, BCON for LVDS

 Back to top

AW00148804000 C++ Samples

pylon SDK Samples Manual 3

2.2 Grab

This sample demonstrates how to grab and process images using the CInstantCamera class.

The images are grabbed and processed asynchronously, i.e., at the same time that the application
is processing a buffer, the acquisition of the next buffer takes place.

The CInstantCamera class uses a pool of buffers to retrieve image data from the camera device.
Once a buffer is filled and ready, the buffer can be retrieved from the camera object for
processing. The buffer and additional image data are collected in a grab result. The grab result is
held by a smart pointer after retrieval. The buffer is automatically reused when explicitly released
or when the smart pointer object is destroyed.

AW00148804000 C++ Samples

pylon SDK Samples Manual 4

Code

The CInstantCamera class is used to create an Instant Camera object with the first camera device
found.

The CGrabResultPtr class is used to initialize a smart pointer that will receive the grab result data.
It controls the reuse and lifetime of the referenced grab result. When all smart pointers referencing
a grab result go out of scope, the referenced grab result is reused or destroyed. The grab result is
still valid after the camera object it originated from has been destroyed.

The DisplayImage class is used to display the grabbed images.

Applicable Interfaces

GigE Vision, USB3 Vision, BCON for LVDS, CXP

 Back to top

AW00148804000 C++ Samples

pylon SDK Samples Manual 5

2.3 Grab_CameraEvents

Basler USB3 Vision and GigE Vision cameras can send event messages. For example, when a
sensor exposure has finished, the camera can send an Exposure End event to the computer. The
event can be received by the computer before the image data of the finished exposure has been
transferred completely. This sample demonstrates how to be notified when camera event message
data is received.

The event messages are automatically retrieved and processed by the InstantCamera classes.
The information carried by event messages is exposed as parameter nodes in the camera node
map and can be accessed like standard camera parameters. These nodes are updated when a
camera event is received. You can register camera event handler objects that are triggered when
event data has been received.

These mechanisms are demonstrated for the Exposure End and the Event Overrun events.

The Exposure End event carries the following information:

• ExposureEndEventFrameID: Number of the image that has been exposed.

• ExposureEndEventTimestamp: Time when the event was generated.

• ExposureEndEventStreamChannelIndex: Number of the image data stream used to
transfer the image. On Basler cameras, this parameter is always set to 0.

The Event Overrun event is sent by the camera as a warning that events are being dropped. The
notification contains no specific information about how many or which events have been dropped.

Events may be dropped if events are generated at a high frequency and if there isn't enough
bandwidth available to send the events.

This sample also shows you how to register event handlers that indicate the arrival of events sent
by the camera. For demonstration purposes, different handlers are registered for the same event.

Note: Different camera families implement different versions of the Standard Feature Naming
Convention (SFNC). That's why the name and the type of the parameters used can be different.

AW00148804000 C++ Samples

pylon SDK Samples Manual 6

Code

The CBaslerUniversalInstantCamera class is used to create a camera object with the first found
camera device independent of its interface.

The CSoftwareTriggerConfiguration class is used to register the standard configuration event
handler for enabling software triggering. The software trigger configuration handler replaces the
default configuration handler.

The CSampleCameraEventHandler class demonstrates the usage of example handlers for camera
events.

The CSampleImageEventHandler class demonstrates the usage of an image event handler.

The CGrabResultPtr class is used to initialize a smart pointer that will receive the grab result data.
It controls the reuse and lifetime of the referenced grab result. When all smart pointers referencing
a grab result go out of scope, the referenced grab result is reused or destroyed. The grab result is
still valid after the camera object it originated from has been destroyed.

Applicable Interfaces

GigE Vision, USB3 Vision

 Back to top

AW00148804000 C++ Samples

pylon SDK Samples Manual 7

2.4 Grab_ChunkImage

Basler cameras supporting the Data Chunk feature can generate supplementary image data, e.g.,
frame count, time stamp, or CRC checksums, and append it to each acquired image.

This sample demonstrates how to enable the Data Chunks feature, how to grab images, and how
to process the appended data. When the camera is in chunk mode, it transfers data blocks that
are partitioned into chunks. The first chunk is always the image data. The data chunks that you
have chosen follow the image data chunk.

Code

The CBaslerUniversalInstantCamera class is used to create a camera object with the first found
camera device independent of its interface.

The CBaslerUniversalGrabResultPtr class is used to initialize a smart pointer that will receive the
grab result and chunk data independent of the camera interface.

The CSampleImageEventHandler class demonstrates the usage of an image event handler.

The DisplayImage class is used to display the grabbed images.

Applicable Interfaces

GigE Vision, USB3 Vision

 Back to top

AW00148804000 C++ Samples

pylon SDK Samples Manual 8

2.5 Grab_MultiCast

This sample applies to Basler GigE Vision cameras only and demonstrates how to open a camera
in multicast mode and how to receive a multicast stream.

Two instances of an application must be run simultaneously on different computers. The first
application started on computer A acts as the controlling application and has full access to the
GigE camera. The second instance started on computer B opens the camera in monitor mode.
This instance is not able to control the camera but can receive multicast streams.

To run the sample, start the application on computer A in control mode. After computer A has
begun to receive frames, start the second instance of this application on computer B in monitor
mode.

Control application started on computer A.

AW00148804000 C++ Samples

pylon SDK Samples Manual 9

Monitor application started on computer B.

Code

The CDeviceInfo class is used to look for cameras with a specific interface, i.e., GigE Vision only
(BaslerGigEDeviceClass).

The CBaslerUniversalInstantCamera class is used to find and create a camera object for the first
GigE camera found.

When the camera is opened in control mode, the transmission type must be set to "multicast". In
this case, the IP address and the IP port must also be set. This is done by the following command:

camera.GetStreamGrabberParams().TransmissionType = TransmissionType_Multicast;

When the camera is opened in monitor mode, i.e., the camera is already controlled by another
application and configured for multicast, the active camera configuration can be used. In this case,
the IP address and IP port will be set automatically:

camera.GetStreamGrabberParams().TransmissionType = TransmissionType_UseCameraConfig;

RegisterConfiguration() is used to remove the default camera configuration. This is necessary
when a monitor mode is selected because the monitoring application is not allowed to modify any
camera parameter settings.

The CConfigurationEventPrinter and CImageEventPrinter classes are used for information
purposes to print details about events being called and image grabbing.

The CGrabResultPtr class is used to initialize a smart pointer that will receive the grab result data.
It controls the reuse and lifetime of the referenced grab result. When all smart pointers referencing
a grab result go out of scope, the referenced grab result is reused or destroyed. The grab result is
still valid after the camera object it originated from has been destroyed.

Applicable Interfaces

GigE Vision

AW00148804000 C++ Samples

pylon SDK Samples Manual 10

 Back to top

AW00148804000 C++ Samples

pylon SDK Samples Manual 11

2.6 Grab_MultipleCameras

This sample demonstrates how to grab and process images from multiple cameras using the
CInstantCameraArray class. The CInstantCameraArray class represents an array of Instant
Camera objects. It provides almost the same interface as the Instant Camera for grabbing.

The main purpose of the CInstantCameraArray is to simplify waiting for images and camera events
of multiple cameras in one thread. This is done by providing a single RetrieveResult method for all
cameras in the array.

Alternatively, the grabbing can be started using the internal grab loop threads of all cameras in the
CInstantCameraArray. The grabbed images can then be processed by one or more image event
handlers. Note that this is not shown in this sample.

Code

The CInstantCameraArray class demonstrates how to create an array of Instant Cameras for the
devices found.

StartGrabbing() starts grabbing sequentially for all cameras, starting with index 0, 1, etc.

The CGrabResultPtr class is used to initialize a smart pointer that will receive the grab result data.
It controls the reuse and lifetime of the referenced grab result. When all smart pointers referencing
a grab result go out of scope, the referenced grab result is reused or destroyed. The grab result is
still valid after the camera object it originated from has been destroyed.

The DisplayImage class is used to show the image acquired by each camera in a separate window
for each camera.

Applicable Interfaces

GigE Vision, USB3 Vision, BCON for LVDS, CXP

 Back to top

AW00148804000 C++ Samples

pylon SDK Samples Manual 12

2.7 Grab_Strategies

This sample demonstrates the use of the CInstantCamera grab strategies
GrabStrategy_OneByOne, GrabStrategy_LatestImageOnly, GrabStrategy_LatestImages, and
GrabStrategy_UpcomingImage.

When the "OneByOne" grab strategy is used, images are processed in the order of their
acquisition. This strategy can be useful when all grabbed images need to be processed, e.g., in
production and quality inspection applications.

The "LatestImageOnly" and "LatestImages" strategies can be useful when the acquired images
are only displayed on screen. If the processor has been busy for a while and images could not be
displayed automatically, the latest image is displayed when processing time is available again.

The "UpcomingImage" grab strategy can be used to make sure to get an image that has been
grabbed after RetrieveResult() has been called. This strategy cannot be used with USB3 Vision
cameras.

Code

The CInstantCamera class is used to create an Instant Camera object with the first camera device
found.

The CGrabResultPtr class is used to initialize a smart pointer that will receive the grab result data.
It controls the reuse and lifetime of the referenced grab result. When all smart pointers referencing
a grab result go out of scope, the referenced grab result is reused or destroyed. The grab result is
still valid after the camera object it originated from has been destroyed.

The CSoftwareTriggerConfiguration class is used to register the standard configuration event
handler for enabling software triggering. The software trigger configuration handler replaces the
default configuration.

StartGrabbing() is used to demonstrate the usage of the different grab strategies.

AW00148804000 C++ Samples

pylon SDK Samples Manual 13

Applicable Interfaces

GigE Vision, USB3 Vision, BCON for LVDS, CXP

 Back to top

AW00148804000 C++ Samples

pylon SDK Samples Manual 14

2.8 Grab_UsingActionCommand

This sample applies to Basler GigE Vision cameras only and demonstrates how to issue a GigE
Vision ACTION_CMD to multiple cameras.

By using an action command, multiple cameras can be triggered at the same time as opposed to
software triggering where each camera must be triggered individually.

AW00148804000 C++ Samples

pylon SDK Samples Manual 15

Code

To make the configuration of multiple cameras easier, this sample uses the
CBaslerUniversalInstantCameraArray class.

The IGigETransportLayer interface is used to issue action commands.

The CActionTriggerConfiguration class is used to set up the basic action command features.

The CBaslerUniversalGrabResultPtr class is used to declare and initialize a smart pointer to
receive the grab result data. When the cameras in the array are created, a camera context value is
assigned to the index number of the camera in the array. The camera context is a user-settable
value, which is attached to each grab result and can be used to determine the camera that
produced the grab result, i.e., ptrGrabResult->GetCameraContext().

The DisplayImage class is used to display the grabbed images.

Applicable Interfaces

GigE Vision

 Back to top

AW00148804000 C++ Samples

pylon SDK Samples Manual 16

2.9 Grab_UsingBufferFactory

This sample demonstrates the use of a user-provided buffer factory.

The use of a buffer factory is optional and intended for advanced use cases only. A buffer factory
is only required if you plan to grab into externally supplied buffers.

Code

The MyBufferFactory class demonstrates the usage of a user-provided buffer factory.

The buffer factory must be created first because objects on the stack are destroyed in reverse
order of creation. The buffer factory must exist longer than the Instant Camera object in this
sample.

The CInstantCamera class is used to create an Instant Camera object with the first camera device
found.

SetBufferFactory() provides its own implementation of a buffer factory. Since we control the
lifetime of the factory object, we pass the Cleanup_None argument.

Applicable Interfaces

GigE Vision, USB3 Vision, BCON for LVDS, CXP

 Back to top

AW00148804000 C++ Samples

pylon SDK Samples Manual 17

2.10 Grab_UsingExposureEndEvent

This sample demonstrates how to use the Exposure End event to speed up image acquisition.

For example, when a sensor exposure is finished, the camera can send an Exposure End event to
the computer.

The computer can receive the event before the image data of the finished exposure has been
transferred completely.

This can be used in order to avoid an unnecessary delay, e.g., when an imaged object is moved
before the related image data transfer is complete.

Code

The MyEvents enumeration is used for distinguishing between different events, e.g.,
ExposureEndEvent, FrameStartOvertrigger, EventOverrunEvent, ImageReceivedEvent,
MoveEvent, NoEvent.

The CEventHandler class is used to register image and camera event handlers.
Note: additional handling is required for GigE camera events because the event network packets
can be lost, doubled or delayed on the network.

The CBaslerUniversalInstantCamera class is used to create a camera object with the first found
camera device independent of its interface.

The CConfigurationEventPrinter class is used for information purposes to print details about
camera use.

AW00148804000 C++ Samples

pylon SDK Samples Manual 18

The CGrabResultPtr class is used to initialize a smart pointer that will receive the grab result data.
It controls the reuse and lifetime of the referenced grab result. When all smart pointers referencing
a grab result go out of scope, the referenced grab result is reused or destroyed. The grab result is
still valid after the camera object it originated from has been destroyed.

Applicable Interfaces

GigE Vision, USB3 Vision

 Back to top

AW00148804000 C++ Samples

pylon SDK Samples Manual 19

2.11 Grab_UsingGrabLoopThread

This sample demonstrates how to grab and process images using the grab loop thread provided
by the CInstantCamera class.

Code

The CInstantCamera class is used to create an Instant Camera object with the first camera device
found.

The CSoftwareTriggerConfiguration class is used to register the standard configuration event
handler for enabling software triggering. The software trigger configuration handler replaces the
default configuration.

The CConfigurationEventPrinter class is used for information purposes to print details about
camera use.

The CImageEventPrinter class serves as a placeholder for an image processing task. When using
the grab loop thread provided by the Instant Camera object, an image event handler processing
the grab results must be created and registered.

CanWaitForFrameTriggerReady() is used to query the camera device whether it is ready to accept
the next frame trigger.

StartGrabbing() demonstrates how to start grabbing using the grab loop thread by setting the
grabLoopType parameter to GrabLoop_ProvidedByInstantCamera. The grab results are delivered
to the image event handlers. The GrabStrategy_OneByOne default grab strategy is used in this
case.

WaitForFrameTriggerReady() is used to wait up to 500 ms for the camera to be ready for
triggering.

AW00148804000 C++ Samples

pylon SDK Samples Manual 20

ExecuteSoftwareTrigger() is used to execute the software trigger.

The DisplayImage class is used to display the grabbed images.

Applicable Interfaces

GigE Vision, USB3 Vision, BCON for LVDS, CXP

 Back to top

AW00148804000 C++ Samples

pylon SDK Samples Manual 21

2.12 Grab_UsingSequencer

This sample demonstrates how to grab images using the Sequencer feature of a Basler camera.

Three sequence sets are used for image acquisition. Each sequence set uses a different image
height.

Code

The CBaslerUniversalInstantCamera class is used to create a camera object with the first found
camera device independent of its interface.

The CSoftwareTriggerConfiguration class is used to register the standard configuration event
handler for enabling software triggering. The software trigger configuration handler replaces the
default configuration.

The CGrabResultPtr class is used to initialize a smart pointer that will receive the grab result data.
It controls the reuse and lifetime of the referenced grab result. When all smart pointers referencing
a grab result go out of scope, the referenced grab result is reused or destroyed. The grab result is
still valid after the camera object it originated from has been destroyed.

The DisplayImage class is used to display the grabbed images.

Applicable Interfaces

GigE Vision, USB3 Vision

 Back to top

AW00148804000 C++ Samples

pylon SDK Samples Manual 22

2.13 GUI_ImageWindow

This sample demonstrates how to display images using the CPylonImageWindow class. Here, an
image is grabbed and split into multiple tiles. Each tile is displayed in a separate image window.

Code

The CPylonImageWindow class is used to create an array of image windows for displaying
camera image data.

The CInstantCamera class is used to create an Instant Camera object with the first camera device
found.

AW00148804000 C++ Samples

pylon SDK Samples Manual 23

StartGrabbing() demonstrates how to start the grabbing by applying the
GrabStrategy_LatestImageOnly grab strategy. Using this strategy is recommended when images
have to be displayed.

The CGrabResultPtr class is used to initialize a smart pointer that will receive the grab result data.
It controls the reuse and lifetime of the referenced grab result. When all smart pointers referencing
a grab result go out of scope, the referenced grab result is reused or destroyed. The grab result is
still valid after the camera object it originated from has been destroyed.

The CPylonImage class is used to split the grabbed image into tiles, which in turn will be displayed
in different image windows.

Applicable Interfaces

GigE Vision, USB3 Vision, BCON for LVDS, CXP

 Back to top

AW00148804000 C++ Samples

pylon SDK Samples Manual 24

2.14 GUI_Sample

This sample demonstrates the use of a MFC GUI together with the pylon C++ API to enumerate
attached cameras, to configure a camera, to start and stop the grab and to display and store
grabbed images.

It also shows you how to use GUI controls to display and modify camera parameters.

Code

When the Refresh button is clicked, CGuiSampleDoc::OnViewRefresh() is called, which in turn
calls CGuiSampleApp::EnumerateDevices() to enumerate all attached devices.

By selecting a camera in the device list, CGuiSampleApp::OnOpenCamera() is called to open the
selected camera. The Single Shot (Grab One) and Start (Grab Continuous) buttons as well as the
Exposure, Gain, Test Image and Pixel Format parameters are initialized and enabled now.

By clicking on the Single Shot button, CGuiSampleDoc::OnGrabOne() is called. To grab a single
image, StartGrabbing() is called with the following arguments:

m_camera.StartGrabbing(1, Pylon::GrabStrategy_OneByOne,
Pylon::GrabLoop_ProvidedByInstantCamera);

When the image is received, pylon will call the CGuiSampleDoc::OnImageGrabbed() handler. To
display the image, CGuiSampleDoc::OnNewGrabresult() is called.

By clicking on the Start button, CGuiSampleDoc::OnStartGrabbing() is called.

To grab images continuously, StartGrabbing() is called with the following arguments:

m_camera.StartGrabbing(Pylon::GrabStrategy_OneByOne,
Pylon::GrabLoop_ProvidedByInstantCamera);

In this case, the camera will grab images until StopGrabbing() is called.

AW00148804000 C++ Samples

pylon SDK Samples Manual 25

When a new image is received, pylon will call the CGuiSampleDoc::OnImageGrabbed() handler.
To display the image, CGuiSampleDoc::OnNewGrabresult() is called.

The Stop button gets enabled only after the Start button has been clicked. To stop continuous
image acquisition, the Stop button has to be clicked. Upon clicking the Stop button,
CGuiSampleDoc::OnStopGrab() is called.

When the Save button is clicked, CGuiSampleDoc::OnFileImageSaveAs() is called and a Bitmap
(BMP) image will be saved (BMP is the default file format). Alternatively, the image can be saved
in TIFF, PNG, JPEG, or Raw file formats.

Applicable Interfaces

GigE Vision, USB3 Vision, CXP

 Back to top

AW00148804000 C++ Samples

pylon SDK Samples Manual 26

2.15 GUI_SampleMultiCam

This sample demonstrates how to operate multiple cameras using an MFC GUI together with the
pylon C++ API.

The sample demonstrates different techniques for opening a camera, e.g., by using its serial
number or user device ID. It also contains an image processing example and shows how to handle
device disconnections.

The sample covers single and continuous image acquisition using software as well as hardware
triggering.

Code

When the Discover Cameras button is clicked, the
CGuiSampleMultiCamDlg::OnBnClickedButtonScan() function is called, which in turn calls the
CGuiSampleMultiCamDlg::EnumerateDevices() function to enumerate all attached devices.

By clicking the Open Selected button, the
CGuiSampleMultiCamDlg::InternalOnBnClickedOpenSelected() function is called, which in turn
calls the CGuiSampleMultiCamDlg::InternalOpenCamera() function to create a new device info
object.

Then, the CGuiCamera::CGuiCamera() function is called to create a camera object and open the
selected camera. In addition, callback functions for parameter changes are registered, e.g., for
Exposure Time, Gain, Pixel Format, etc.

AW00148804000 C++ Samples

pylon SDK Samples Manual 27

Cameras can be opened by clicking the Open by SN (SN = serial number) or Open by User ID
buttons. The latter assumes that you have already assigned a user ID to the given camera, e.g., in
the pylon Viewer or via the pylon API.

After a camera has been opened, the following GUI elements become available:

 Single Shot, Continuous Shot, Stop, and Execute (for executing a software trigger) buttons

 Exposure Time and Gain sliders

 Pixel Format, Trigger Mode, and Trigger Source drop-down lists

 Invert Pixels checkbox

By clicking the Single Shot button, the CGuiCamera::SingleGrab() function is called. To grab a
single image, the StartGrabbing() function is called with the following arguments:

m_camera.StartGrabbing(1, Pylon::GrabStrategy_OneByOne,
Pylon::GrabLoop_ProvidedByInstantCamera);

When the image is received, pylon will call the CGuiCamera::OnImageGrabbed() handler. To
display the image, the CGuiSampleMultiCamDlg::OnNewGrabresult() function is called.

By clicking the Continuous Shot button, the CGuiCamera::ContinuousGrab() function is called. To
grab images continuously, the StartGrabbing() function is called with the following arguments:

m_camera.StartGrabbing(Pylon::GrabStrategy_OneByOne,
Pylon::GrabLoop_ProvidedByInstantCamera);

In this case, the camera will grab images until StopGrabbing() is called.

When a new image is received, pylon will call the CGuiCamera::OnImageGrabbed() handler. To
display the image, the CGuiSampleMultiCamDlg::OnNewGrabresult() function is called.

This sample also demonstrates the triggering of cameras by using a software trigger. For this
purpose, the Trigger Mode parameter has to be set to On, and the Trigger Source parameter
has to be set to Software. When starting a single or a continuous image acquisition, the camera
will then be waiting for a software trigger.

By clicking the Execute button, the CGuiCamera::ExecuteSoftwareTrigger() function will be called,
which will execute a software trigger.

For triggering the camera by hardware trigger, set Trigger Mode to On and Trigger Source to,
e.g., Line1. When starting a single or a continuous image acquisition, the camera will then be
waiting for a hardware trigger.

By selecting the Invert Pixels checkbox, an example of image processing will be shown. In the
example, the pixel data will be inverted. This is done in the CGuiCamera::OnNewGrabResult()
function.

Finally, this sample also shows the use of Device Removal callbacks. If an already opened camera
is disconnected, the CGuiCamera::OnCameraDeviceRemoved() function is called. In turn, the
CGuiSampleMultiCamDlg::OnDeviceRemoved() function will be called to inform the user about the
disconnected camera.

Applicable interfaces

GigE Vision, USB3 Vision, CoaXPress

 Back to top

AW00148804000 C++ Samples

pylon SDK Samples Manual 28

2.16 ParametrizeCamera_AutoFunctions

This sample demonstrates how to use the auto functions of Basler cameras, e.g., Gain Auto,
Exposure Auto and Balance White Auto (color cameras only).

Note: Different camera families implement different versions of the Standard Feature Naming
Convention (SFNC). That's why the name and the type of the parameters used can be different.

Code

The CBaslerUniversalInstantCamera class is used to create a camera object with the first found
camera device independent of its interface.

The CAcquireSingleFrameConfiguration class is used to register the standard event handler for
configuring single frame acquisition. This overrides the default configuration as all event handlers
are removed by setting the registration mode to RegistrationMode_ReplaceAll. Note that the
camera device auto functions do not require grabbing by single frame acquisition. All available
acquisition modes can be used.

The AutoGainOnce() and AutoGainContinuous() functions control brightness by using the Once
and the Continuous modes of the Gain Auto auto function.

The AutoExposureOnce() and AutoExposureContinuous() functions control brightness by using
the Once and the Continuous modes of the Exposure Auto auto function.

The CBaslerUniversalGrabResultPtr class is used to initialize a smart pointer that will receive the
grab result data. The DisplayImage class is used to display the grabbed images.

Applicable Interfaces

GigE Vision, USB3 Vision

 Back to top

AW00148804000 C++ Samples

pylon SDK Samples Manual 29

2.17 ParametrizeCamera_Configurations

The Instant Camera class provides configuration event handlers to configure the camera and
handle grab results. This is very useful for standard camera setups and image processing tasks.

This sample demonstrates how to use the existing configuration event handlers and how to
register your own configuration event handlers.

Configuration event handlers are derived from the CConfigurationEventHandler base class. This
class provides virtual methods that can be overridden. If the configuration event handler is
registered, these methods are called when the state of the Instant Camera object changes, e.g.,
when the camera object is opened or closed.

The standard configuration event handler provides an implementation for the OnOpened() method
that parametrizes the camera.

To override Basler’s implementation, create your own handler and attach it to
CConfigurationEventHandler.

Device-specific camera classes, e.g., for GigE cameras, provide specialized event handler base
classes, e.g., CBaslerGigEConfigurationEventHandler.

Code

The CInstantCamera class is used to create an Instant Camera object with the first camera device
found.

The CImageEventPrinter class is used to output details about the grabbed images.

The CGrabResultPtr class is used to initialize a smart pointer that receives the grab result data. It
controls the reuse and lifetime of the referenced grab result. When all smart pointers referencing a
grab result go out of scope, the referenced grab result is reused or destroyed. The grab result is
still valid after the camera object it originated from has been destroyed.

AW00148804000 C++ Samples

pylon SDK Samples Manual 30

The CAcquireContinuousConfiguration class is the default configuration of the Instant Camera
class. It is automatically registered when an Instant Camera object is created. This Instant Camera
configuration is provided as header-only file. The code can be copied and modified to create your
own configuration classes.

In this sample, the standard configuration event handler is registered for configuring the camera
for continuous acquisition. By setting the registration mode to RegistrationMode_ReplaceAll, the
new configuration handler replaces the default configuration handler that has been automatically
registered when creating the Instant Camera object. The handler is automatically deleted when
deregistered or when the registry is cleared if Cleanup_Delete is specified.

The CSoftwareTriggerConfiguration class is used to register the standard configuration event
handler for enabling software triggering. This Instant Camera configuration is provided as header-
only file. The code can be copied and modified to create your own configuration classes, e.g., to
enable hardware triggering. The software trigger configuration handler replaces the default
configuration.

The CAcquireSingleFrameConfiguration class is used to register the standard event handler for
configuring single frame acquisition. This overrides the default configuration as all event handlers
are removed by setting the registration mode to RegistrationMode_ReplaceAll.

The CPixelFormatAndAoiConfiguration class is used to register an additional configuration handler
to set the image format and adjust the image ROI. This Instant Camera configuration is provided
as header-only file. The code can be copied and modified to create your own configuration
classes.

By setting the registration mode to RegistrationMode_Append, the configuration handler is added
instead of replacing the configuration handler already registered.

Applicable Interfaces

GigE Vision, USB3 Vision, BCON for LVDS, CXP

 Back to top

AW00148804000 C++ Samples

pylon SDK Samples Manual 31

2.18 ParametrizeCamera_GenericParameterAccess

This sample illustrates how to read and write different camera parameter types.

For camera configuration and for accessing other parameters, the pylon API uses the technologies
defined by the GenICam standard (http://www.genicam.org). The standard also defines a format
for camera description files.

These files describe the configuration interface of GenICam compliant cameras. The description
files are written in XML and describe camera registers, their interdependencies, and all other
information needed to access high-level features. This includes features such as Gain, Exposure
Time, or Pixel Format. The features are accessed by means of low level register read and write
operations.

The elements of a camera description file are represented as parameter objects. For example, a
parameter object can represent a single camera register, a camera parameter such as Gain, or a
set of parameter values. Each node implements the GenApi::INode interface.

The nodes are linked together by different relationships as explained in the GenICam standard
document. The complete set of nodes is stored in a data structure called a node map. At runtime,
the node map is instantiated from an XML description file.

This sample shows the generic approach for configuring a camera using the GenApi node maps
represented by the GenApi::INodeMap interface. The names and types of the parameter nodes
can be found in the Basler pylon Programmer's Guide and API Reference Documentation, in the
Basler Product Documentation, in the camera's Register Structure and Access Methods
documentation (if applicable), and by using the pylon Viewer tool.

See also the ParametrizeCamera_NativeParameterAccess sample for the native approach for
configuring a camera.

Code

The CInstantCamera class is used to create an Instant Camera object with the first camera device
found.

http://www.genicam.org/

AW00148804000 C++ Samples

pylon SDK Samples Manual 32

The INodeMap interface is used to access the feature node map of the camera device. It provides
access to all features supported by the camera.

CIntegerPtr is a smart pointer for the IInteger interface pointer. It is used to access camera
features of the int64_t type, e.g., image ROI (region of interest).

CEnumerationPtr is a smart pointer for the IEnumeration interface pointer. It is used to access
camera features of the enumeration type, e.g., Pixel Format.

CFloatPtr is a smart pointer for the IFloat interface pointer. It is used to access camera features of
the float type, e.g., Gain (only on camera devices compliant with SFNC version 2.0).

Applicable Interfaces

GigE Vision, USB3 Vision, Camera Link, BCON for LVDS, CXP

 Back to top

AW00148804000 C++ Samples

pylon SDK Samples Manual 33

2.19 ParametrizeCamera_LoadAndSave

This sample application demonstrates how to save or load the features of a camera to or from a
file.

Code

The CInstantCamera class is used to create an Instant Camera object with the first camera device
found.

The CFeaturePersistence class is a pylon utility class for saving and restoring camera features to
and from a file or string.

Note: When saving features, the behavior of cameras supporting sequencers depends on the
current setting of the "SequenceEnable" (some GigE models) or "SequencerConfigurationMode"
(USB only) features respectively. The sequence sets are only exported, if the sequencer is in
configuration mode. Otherwise, the camera features are exported without sequence sets.

Applicable Interfaces

GigE Vision, USB3 Vision, Camera Link, BCON for LVDS

 Back to top

AW00148804000 C++ Samples

pylon SDK Samples Manual 34

2.20 ParametrizeCamera_LookupTable

This sample demonstrates the use of the Luminance Lookup Table feature independent of the
camera interface.

Code

The CBaslerUniversalInstantCamera class is used to create a camera object with the first found
camera device independent of its interface.

The camera feature LUTSelector is used to select the lookup table. As some cameras have 10-bit
and others have 12-bit lookup tables, the type of the lookup table for the current device must be
determined first. The LUTIndex and LUTValue parameters are used to access the lookup table
values. This sample demonstrates how the lookup table can be used to cause an inversion of the
sensor values.

Applicable Interfaces

GigE Vision, USB3 Vision

 Back to top

AW00148804000 C++ Samples

pylon SDK Samples Manual 35

2.21 ParametrizeCamera_NativeParameterAccess

This sample shows the native approach for configuring a camera using device-specific Instant
Camera classes.

See also the ParametrizeCamera_GenericParameterAccess sample for the generic approach for
configuring a camera.

For camera configuration and for accessing other parameters, the pylon API uses the technologies
defined by the GenICam standard (http://www.genicam.org). The standard also defines a format
for camera description files.

These files describe the configuration interface of GenICam compliant cameras. The description
files are written in XML and describe camera registers, their interdependencies, and all other
information needed to access high-level features. This includes features such as Gain, Exposure
Time, or Pixel Format. The features are accessed by means of low level register read and write
operations.

The elements of a camera description file are represented as parameter objects. For example, a
parameter object can represent a single camera register, a camera parameter such as Gain, or a
set of parameter values. Each node implements the GenApi::INode interface.

Using the code generators provided by GenICam's GenApi module, a programming interface is
created from a camera description file. This provides a function for each parameter that is
available for the camera device. The programming interface is exported by the device-specific
Instant Camera classes. This is the easiest way to access parameters.

Code

The CBaslerUniversalInstantCamera class is used to create a camera object with the first found
camera device independent of its interface.

This sample demonstrates the use of camera features of the IInteger type, e.g., Width, Height,
GainRaw (available on camera devices compliant with SFNC versions before 2.0), of the
IEnumeration type, e.g., Pixel Format, or of the IFloat type, e.g., Gain (available on camera
devices compliant with SFNC version 2.0).

http://www.genicam.org/

AW00148804000 C++ Samples

pylon SDK Samples Manual 36

Applicable Interfaces

GigE Vision, USB3 Vision, Camera Link, BCON for LVDS, CXP

 Back to top

AW00148804000 C++ Samples

pylon SDK Samples Manual 37

2.22 ParametrizeCamera_SerialCommunication

This sample demonstrates the use of the Serial Communication feature (UART) supported by ace
2 Pro cameras. This feature allows you to establish serial communication between a host and an
external device through the camera's I/O lines. For more information on the Serial Communication
feature, refer to the Basler Product Documentation under docs.baslerweb.com.

Code

The CBaslerUniversalInstantCamera class is used to create a camera object with the first camera
found. Make sure to use an ace 2 Pro camera that supports the serial communication feature.
Otherwise, an exception will be returned when trying to access and configure the camera’s I/O
lines.

To test the serial communication without having an external device connected to the camera, or to
rule out errors caused by the external device, you can configure a loopback mode on the camera.
This is done by setting the BslSerialRxSource parameter to SerialTx.

In this case, the serial input is connected to the serial output internally, so the camera receives
exactly what it transmits.

To configure the serial communication between the camera and an external device, the GPIO Line
2 (SerialTx) and GPIO Line 3 (BslSerialRxSource) must be configured accordingly. Make sure not
to use the opto-coupled I/O lines for UART communications.

In addition, depending on the configuration of the external device, the camera’s baud rate
(BslSerialBaudRate), the number of data bits (BslSerialNumberOfDataBits), the number of stop
bits (BslSerialNumberOfStopBits), and the kind of parity check (BslSerialParity) must be
configured.

After the serial communication has been configured, you can send data to the external device, via
the SerialTransmit() function, and receive data from it, via the SerialReceive() function.

Applicable Interfaces

GigE Vision, USB3 Vision

 Back to top

https://docs.baslerweb.com/

AW00148804000 C++ Samples

pylon SDK Samples Manual 38

2.23 ParametrizeCamera_Shading

This sample demonstrates how to calculate and upload gain shading sets to Basler racer and
Basler runner line scan GigE Vision cameras.

Code

The CDeviceInfo class is used to look for cameras with a specific interface, e.g., GigE Vision only
(BaslerGigEDeviceClass).

The CBaslerUniversalInstantCamera class is used to create a camera object with the first found
GigE camera.

The CAcquireSingleFrameConfiguration class is used to register the standard event handler for
configuring single frame acquisition. This overrides the default configuration as all event handlers
are removed by setting the registration mode to RegistrationMode_ReplaceAll.

CreateShadingData() assumes that the conditions for exposure (illumination, exposure time, etc.)
have been set up to deliver images of uniform intensity (gray value), but that the acquired images
are not uniform. The gain shading data is calculated so that the observed non-uniformity will be
compensated when the data is applied. The data is saved in a local file.

UploadFile() transfers the calculated gain shading data from the local file to the camera.

CheckShadingData() tests to what extent the non-uniformity has been compensated.

Applicable Interfaces

GigE Vision

 Back to top

AW00148804000 C++ Samples

pylon SDK Samples Manual 39

2.24 ParametrizeCamera_UserSets

This sample demonstrates how to use user configuration sets (user sets) and how to configure the
camera to start up with the user-defined settings of user set 1.

You can also use the pylon Viewer to configure your camera and store custom settings in a user
set of your choice.

Note: Different camera families implement different versions of the Standard Feature Naming
Convention (SFNC). That's why the name and the type of the parameters used can be different.

ATTENTION: Executing this sample will overwrite all current settings in user set 1.

Code

The CBaslerUniversalInstantCamera class is used to create a camera object with the first found
camera device independent of its interface.

The camera parameters UserSetSelector, UserSetLoad, UserSetSave, and
UserSetDefaultSelector are used to demonstrate the use of user configuration sets (user sets) and
how to configure the camera to start up with user-defined settings.

Applicable Interfaces

GigE Vision, USB3 Vision, Camera Link, BCON for LVDS, CXP

 Back to top

AW00148804000 C++ Samples

pylon SDK Samples Manual 40

2.25 Utility_GrabAvi

This sample demonstrates how to create a video file in Audio Video Interleave (AVI) format on
Windows operating systems only.

Note: AVI is best for recording high-quality lossless videos because it allows you to record without
compression. The disadvantage is that the file size is limited to 2 GB. Once that threshold is
reached, the recording stops and an error message is displayed.

Code

The CAviWriter class is used to create an AVI writer object. The writer object takes the following
arguments: file name, playback frame rate, pixel output format, width and height of the image,
vertical orientation of the image data, and compression options (optional).

StartGrabbing() demonstrates how to start the grabbing by applying the
GrabStrategy_LatestImages grab strategy. Using this strategy is recommended when images
have to be recorded.

The CInstantCamera class is used to create an Instant Camera object with the first camera device
found.

The CGrabResultPtr class is used to initialize a smart pointer that will receive the grab result data.
It controls the reuse and lifetime of the referenced grab result. When all smart pointers referencing
a grab result go out of scope, the referenced grab result is reused or destroyed. The grab result is
still valid after the camera object it originated from has been destroyed.

The DisplayImage class is used to display the grabbed images.

Add() converts the grabbed image to the correct format, if required, and adds it to the AVI file.

Applicable Interfaces

GigE Vision, USB3 Vision, CXP

 Back to top

AW00148804000 C++ Samples

pylon SDK Samples Manual 41

2.26 Utility_GrabVideo

This sample demonstrates how to create a video file in MP4 format. It is presumed that the pylon
Supplementary Package for MPEG-4 is already installed.

Note: There are no file size restrictions when recording MP4 videos. However, the MP4 format
always compresses data to a certain extent, which results in loss of detail.

Code

The CVideoWriter class is used to create a video writer object. Before opening the video writer
object, it is initialized with the current parameter values of the ROI width and height, the pixel
output format, the playback frame rate, and the quality of compression.

StartGrabbing() demonstrates how to start the grabbing by applying the
GrabStrategy_LatestImages grab strategy. Using this strategy is recommended when images
have to be recorded.

The CInstantCamera class is used to create an Instant Camera object with the first camera device
found.

The CGrabResultPtr class is used to initialize a smart pointer that will receive the grab result data.
It controls the reuse and lifetime of the referenced grab result. When all smart pointers referencing
a grab result go out of scope, the referenced grab result is reused or destroyed. The grab result is
still valid after the camera object it originated from has been destroyed.

The DisplayImage class is used to display the grabbed images.

Add() converts the grabbed image to the correct format, if required, and adds it to the video file.

Applicable Interfaces

GigE Vision, USB3 Vision, BCON for LVDS, CXP

 Back to top

AW00148804000 C++ Samples

pylon SDK Samples Manual 42

2.27 Utility_Image

This sample demonstrates how to use the pylon image classes CPylonImage and
CPylonBitmapImage.

CPylonImage supports handling image buffers of the various existing pixel types.

CPylonBitmapImage can be used to easily create Windows bitmaps for displaying images. In
additional, there are two image class-related interfaces in pylon (IImage and IReusableImage).

IImage can be used to access image properties and the image buffer.

The IReusableImage interface extends the IImage interface to be able to reuse the resources of
the image to represent a different image.

Both CPylonImage and CPylonBitmapImage implement the IReusableImage interface.

The CGrabResultPtr grab result class provides a cast operator to the IImage interface. This makes
using the grab result together with the image classes easier.

AW00148804000 C++ Samples

pylon SDK Samples Manual 43

Code

The CPylonImage class describes an image. It takes care of the following:

• Automatically manages size and lifetime of the image.

• Allows taking over a grab result to prevent its reuse as long as required.

• Allows connecting user buffers or buffers provided by third-party software packages.

• Provides methods for loading and saving an image in different file formats.

• Serves as the main target format for the CImageFormatConverter class.

• Makes working with planar images easier.

• Makes extracting AOIs easier, e.g., for thumbnail images of defects.

The CPylonBitmapImage class can be used to easily create Windows bitmaps for displaying
images. It takes care of the following:

• Automatically handles the bitmap creation and lifetime.

• Provides methods for loading and saving an image in different file formats.

• Serves as target format for the CImageFormatConverter class.

The bitmap image class provides a cast operator for HBitmap. The cast operator can be used for
instance to provide the handle to Windows API functions.

The CImageFormatConverter class creates new images by converting a source image to another
format.

The CInstantCamera class is used to create an Instant Camera object with the first camera device
found.

The CGrabResultPtr class is used to initialize a smart pointer that will receive the grab result data.
It controls the reuse and lifetime of the referenced grab result. When all smart pointers referencing
a grab result go out of scope, the referenced grab result is reused or destroyed. The grab result is
still valid after the camera object it originated from has been destroyed.

The DisplayImage class is used to display the grabbed images.

Applicable Interfaces

GigE Vision, USB3 Vision, BCON for LVDS, CXP

 Back to top

AW00148804000 C++ Samples

pylon SDK Samples Manual 44

2.28 Utility_ImageDecompressor

This sample illustrates how to enable and use the Basler Compression Beyond feature in Basler
ace 2 GigE and Basler ace 2 USB 3.0 cameras.

This sample also demonstrates how to decompress the images using the CImageDecompressor
class.

Code

The CInstantCamera class is used to create an Instant Camera object with the first camera device
found.

The CGrabResultPtr class is used to initialize a smart pointer that will receive the grab result data.
It controls the reuse and lifetime of the referenced grab result. When all smart pointers referencing
a grab result go out of scope, the referenced grab result is reused or destroyed. The grab result is
still valid after the camera object it originated from has been destroyed.

The CImageDecompressor class is used to decompress grabbed images. In this sample,
compression and decompression are demonstrated, using lossless and lossy algorithms.

The CPylonImage class is used to create a decompressed target image. The target image is
displayed in an image window.

Applicable Interfaces

GigE Vision, USB3 Vision

 Back to top

AW00148804000 C++ Samples

pylon SDK Samples Manual 45

2.29 Utility_ImageFormatConverter

This sample demonstrates how to use the CImageFormatConverter class. The image format
converter accepts all image formats produced by Basler camera devices. It can convert these to a
number of output formats.

The conversion can be controlled by several parameters. For more information, see the converter
class documentation.

Code

The CImageFormatConverter class creates new images by converting a source image to another
format.

AW00148804000 C++ Samples

pylon SDK Samples Manual 46

The CPylonImage class describes an image. It takes care of the following:

• Automatically manages size and lifetime of the image.

• Allows taking over a grab result to prevent its reuse as long as required.

• Allows connecting user buffers or buffers provided by third-party software packages.

• Provides methods for loading and saving an image in different file formats.

• Serves as the main target format for the CImageFormatConverter class.

• Makes working with planar images easier.

• Makes extracting image ROIs easier, e.g., for thumbnail images of defects.

The CInstantCamera class is used to create an Instant Camera object with the first camera device
found.

The CGrabResultPtr class is used to initialize a smart pointer that will receive the grab result data.
It controls the reuse and lifetime of the referenced grab result. When all smart pointers referencing
a grab result go out of scope, the referenced grab result is reused or destroyed. The grab result is
still valid after the camera object it originated from has been destroyed.

The DisplayImage class is used to display the grabbed images.

Applicable Interfaces

GigE Vision, USB3 Vision, BCON for LVDS, CXP

 Back to top

AW00148804000 C++ Samples

pylon SDK Samples Manual 47

2.30 Utility_ImageLoadAndSave

This sample demonstrates how to load and save images.

The CImagePersistence class provides functions for loading and saving images. It uses the image
class-related pylon interfaces IImage and IReusableImage.

IImage can be used to access image properties and the image buffer. Therefore, it is used when
saving images. In addition to that, images can also be saved by passing an image buffer and the
corresponding properties.

The IReusableImage interface extends the IImage interface to be able to reuse the resources of
the image to represent a different image. The IReusableImage interface is used when loading
images.

The CPylonImage and CPylonBitmapImage image classes implement the IReusableImage
interface. These classes can therefore be used as targets for loading images.

The grab result smart pointer classes provide a cast operator to the IImage interface. This makes it
possible to pass a grab result directly to the function that saves images to disk.

Code

The CImagePersistence class demonstrates how images can be loaded or saved. It can be used
to check whether the image can be saved without prior conversion. Supported image file formats
are TIFF, BMP, JPEG, and PNG.

The CInstantCamera class is used to create an Instant Camera object with the first camera device
found.

The CGrabResultPtr class is used to initialize a smart pointer that will receive the grab result data.
It controls the reuse and lifetime of the referenced grab result. When all smart pointers referencing
a grab result go out of scope, the referenced grab result is reused or destroyed. The grab result is
still valid after the camera object it originated from has been destroyed.

AW00148804000 C++ Samples

pylon SDK Samples Manual 48

The CPylonImage class describes an image. It takes care of the following:

• Automatically manages size and lifetime of the image.

• Allows taking over a grab result to prevent its reuse as long as required.

• Allows connecting user buffers or buffers provided by third-party software packages.

• Provides methods for loading and saving an image in different file formats.

• Serves as the main target format for the CImageFormatConverter class.

• Makes working with planar images easier.

• Makes extracting AOIs easier, e.g., for thumbnail images of defects.

Applicable Interfaces

GigE Vision, USB3 Vision, BCON for LVDS, CXP

 Back to top

AW00148804000 C++ Samples

pylon SDK Samples Manual 49

2.31 Utility_InstantInterface

This sample illustrates how to use the CInstantInterface class to access parameters of the
interface using the Basler CXP-12 interface card. The sample shows how to access the Power-
over-CoaXPress settings and monitor the power usage.

Code

The CInterfaceInfo class is used for storing information about an interface object provided by a
specific transport layer, e.g., BaslerGenTlCxpDeviceClass.
The CUniversalInstantInterface class is used to open the first interface on the CoaXPress interface
card and access its parameters. In this sample, the Power-over-CoaXPress parameter
CxpPoCxpStatus is enabled/disabled. In addition, the current, voltage, and power consumption
information is displayed.

Applicable Interfaces

CXP

 Back to top

AW00148804000 C++ Samples

pylon SDK Samples Manual 50

2.32 Utility_IpConfig

This sample demonstrates how to configure the IP address of a GigE Vision camera. The
functionalities described in this sample are similar to those used in the pylon IP Configurator.

In addition, this sample can be used to automatically and programmatically configure multiple GigE
Vision cameras. As the sample accepts command line arguments, it can be directly executed, e.g.,
from a batch script file.

Code

The CTlFactory class is used to create a GigE transport layer. The GigE transport layer is required
to discover all GigE Vision cameras independent of their current IP address configuration. For that
purpose, the EnumerateAllDevices() function is used.

To set a new IP address of a GigE Vision camera, the BroadcastIpConfiguration() function is used.

Applicable Interfaces

GigE Vision

 Back to top

AW00148804000 C Samples

pylon SDK Samples Manual 51

3 C Samples

3.1 ActionCommands

This sample illustrates how to grab images and trigger multiple cameras using a GigE Vision
action command.

At least two connected GigE cameras are required for this sample.

AW00148804000 C Samples

pylon SDK Samples Manual 52

Code

Before using any pylon methods, the pylon runtime is initialized by calling PylonInitialize().

Then, PylonEnumerateDevices() is called to enumerate all attached camera devices.

Before using a camera device, it must be opened by calling PylonDeviceOpen(). This allows us to
set parameters and grab images.

This sample works only for cameras supporting GigE Vision action commands. This is checked by
calling PylonDeviceFeatureIsAvailable() and passing the device handle and the camera parameter
"ActionControl" as arguments. Cameras with action command support are then configured
accordingly, i.e., the parameters ActionSelector, ActionDeviceKey, ActionGroupKey,
ActionGroupMask, TriggerSelector, TriggerMode, and TriggerSource are set.

If the cameras are connected to a switch, Basler recommends setting the Inter-Packet Delay
(GevSCPD) and the Frame Transmission Delay (GevSCFTD) so that the switch can properly line
up packets.

Images are grabbed using a stream grabber. For each camera device, a stream grabber is created
by calling PylonDeviceGetStreamGrabber() and passing the device handle and the stream grabber
handle as arguments. A handle for the stream grabber's wait object is retrieved within
PylonStreamGrabberGetWaitObject(). The wait object allows waiting for buffers to be filled with
grabbed data.

We must also tell the stream grabber the number and size of the buffers we are using. This is
done with PylonStreamGrabberSetMaxNumBuffer() and PylonStreamGrabberSetMaxBufferSize().
By calling PylonStreamGrabberPrepareGrab(), we allocate the resources required for grabbing.
After this, critical parameters that impact the payload size must not be changed until
PylonStreamGrabberFinishGrab() is called.

Before using the buffers for grabbing, they must be registered and queued into the stream
grabber's input queue. This is done with PylonStreamGrabberRegisterBuffer() and
PylonStreamGrabberQueueBuffer().

AW00148804000 C Samples

pylon SDK Samples Manual 53

To enable image acquisition, PylonDeviceExecuteCommandFeature() is called with the device
handle and the AcqusitionStart camera parameter as arguments. After that, the cameras are
triggered using PylonGigEIssueActionCommand().

In PylonWaitObjectsWaitForAny(), we wait for the next buffer to be filled with a timeout of 5000
ms. The grabbed image is retrieved by calling PylonStreamGrabberRetrieveResult().

With PylonImageWindowDisplayImageGrabResult(), images are displayed in an image window.

When image acquisition is stopped, we must perform a cleanup for all cameras, i.e., all wait
objects must be removed, all allocated buffer memory must be released, and the stream grabber
as well as the camera device handles must be closed and destroyed.

Finally, we shut down the pylon runtime system by calling PylonTerminate(). No pylon functions
should be called after calling PylonTerminate().

Applicable Interfaces

GigE Vision

 Back to top

AW00148804000 C Samples

pylon SDK Samples Manual 54

3.2 BconAdapterSample

This sample shows how to implement and debug important BCON Adapter library functions.

Code

The MyBconAdapterEnumerator.c source file contains a function that illustrates how to get the I²C
device configuration from the environment variable BCON_ADAPTER_I2C_DEVICES.

In this example, the BCON_ADAPTER_I2C_DEVICES variable is set for two devices:

export BCON_ADAPTER_I2C_DEVICES="/dev/i2c-1:77 /dev/i2c-2:99"

The first device identifier /dev/i2c-1:77 tells the I²C bus to open /dev/i2c-1 and the device address
77. Accordingly, the second device identifier tells the bus to open /dev/i2c-2 with device address
99.

The MyBconAdapterI2CConnection.c source file contains functions that demonstrates how to open
and close the I²C bus connection to a camera device. It also demonstrates how to read and write a
block of data from and to the I²C bus.

The MyBconAdapterLibrary.c source file contains functions that return information about the
initialization or de-initialization of a BCON layer as well as about the BCON library version itself.

The MyBconAdapterLogging.c source file provides functions to enable logging.

Applicable Interfaces

BCON for LVDS

 Back to top

AW00148804000 C Samples

pylon SDK Samples Manual 55

3.3 Chunks

Basler cameras supporting the Data Chunk feature can generate supplementary image data, e.g.,
frame count, time stamp, or CRC checksums, and append it to each acquired image.

This sample illustrates how to enable the Data Chunk feature, how to grab images, and how to
process the appended data. When the camera is in chunk mode, it transfers data blocks
partitioned into chunks. The first chunk is always the image data. If one or more data chunks are
enabled, these chunks are transmitted as chunk 2, 3, and so on.

This sample also demonstrates how to use software triggers. Two buffers are used. Once a buffer
is filled, the acquisition of the next frame is triggered before processing the received buffer. This
approach allows acquiring images while the previous image is still being processed.

Code

Before using any pylon methods, the pylon runtime is initialized by calling PylonInitialize().

Then, PylonEnumerateDevices() is called to enumerate all attached camera devices.

Before using a camera device, it must be opened by calling PylonDeviceOpen(). This allows us to
set parameters and grab images.

As the camera will be triggered by software trigger, the TriggerMode and TriggerSource camera
parameters are configured accordingly.

When using software triggering, the Continuous frame mode should be used. This is done by
passing the device handle and the camera parameters "AcquisitionMode" and "Continuous" as
arguments to PylonDeviceFeatureFromString().

Before enabling individual chunks, the chunk mode must be activated. In this sample, the frame
counter and the CRC checksum data chunks are enabled as well.

The data block containing the image chunk and the other chunks has a self-descriptive layout. A
chunk parser is used to extract the appended chunk data from the grabbed image frame. A chunk
parser is created with PylonDeviceCreateChunkParser() by passing the device and the chunk
parser handles as arguments.

AW00148804000 C Samples

pylon SDK Samples Manual 56

Images are grabbed using a stream grabber. For each camera device, a stream grabber is created
by calling PylonDeviceGetStreamGrabber() and passing the device handle and the stream grabber
handle as arguments. A handle for the stream grabber's wait object is retrieved within
PylonStreamGrabberGetWaitObject(). The wait object allows waiting for buffers to be filled with
grabbed data.

We must also tell the stream grabber the number and size of the buffers we are using. This is
done with PylonStreamGrabberSetMaxNumBuffer() and PylonStreamGrabberSetMaxBufferSize().
By calling PylonStreamGrabberPrepareGrab() we allocate the resources required for grabbing.
After this, critical parameters that impact the payload size must not be changed until
PylonStreamGrabberFinishGrab() is called.

Before using the buffers for grabbing, they must be registered and queued into the stream
grabber's input queue. This is done with PylonStreamGrabberRegisterBuffer() and
PylonStreamGrabberQueueBuffer().

To enable image acquisition, PylonDeviceExecuteCommandFeature() is called with the device
handle and the AcqusitionStart camera parameter as arguments.

Because the trigger mode is enabled, issuing the acquisition start command itself will not trigger
any image acquisitions. Issuing the start command simply prepares the camera to acquire images.
Once the camera is prepared it will acquire one image for every trigger it receives.

Software triggers are issued by calling PylonDeviceExecuteCommandFeature() while passing the
device handle and the "TriggerSoftware" camera parameter as arguments.

In PylonWaitObjectsWait(), we wait for the next buffer to be filled with a timeout of 1000 ms. The
grabbed image is retrieved by calling PylonStreamGrabberRetrieveResult().

If the image was grabbed successfully, we let the chunk parser extract the chunk data by calling
PylonChunkParserAttachBuffer().

After image processing is completed and before re-queueing the buffer, we detach it from the
chunk parser by calling PylonChunkParserDetachBuffer(). Then, we re-queue the buffer to be filled
with image data by calling PylonStreamGrabberQueueBuffer().

When image acquisition is stopped, we must perform a cleanup for all cameras, i.e., all wait
objects must be removed, all allocated buffer memory must be released, and the stream grabber
as well as the camera device handles must be closed and destroyed.

Finally, we shut down the pylon runtime system by calling PylonTerminate(). No pylon functions
should be called after calling PylonTerminate().

Applicable Interfaces

GigE Vision, USB3 Vision

 Back to top

AW00148804000 C Samples

pylon SDK Samples Manual 57

3.4 Events

Basler GigE Vision and USB3 Vision cameras can send event messages. For example, when a
sensor exposure has finished, the camera can send an Exposure End event to the computer. The
event can be received by the computer before the image data for the finished exposure has been
completely transferred. This sample illustrates how to retrieve and process event messages.

Receiving events is similar to grabbing images. An event grabber provides a wait object that is
notified when an event message is available. When an event message is available, it can be
retrieved from the event grabber. In contrast to grabbing images, you don’t need to provide
memory buffers to receive events. The memory buffers are organized by the event grabber itself.

The specific layout of event messages depends on the event type and the camera type. The event
message layout is described in the camera's GenICam XML description file. From the file, a
GenApi node map is created. This means that the information carried by the event messages is
exposed as nodes in the node map and can be accessed like standard camera parameters.

You can register callback functions that are fired when a parameter has been changed. To be
informed that a received event message contains a specific event, you must register a callback for
the parameters associated with the event.

These mechanisms are demonstrated with the Exposure End event. The event carries the
following information:

• ExposureEndEventFrameID: Number of the image that has been exposed.

• ExposureEndEventTimestamp: Time when the event was generated.

• ExposureEndEventStreamChannelIndex: Number of the image data stream used to
transfer the image. On Basler cameras, this parameter is always set to 0.

A callback for the ExposureEndEventFrameID will be registered as an indicator for the arrival of an
end-of-exposure event.

Code

Before using any pylon methods, the pylon runtime is initialized by calling PylonInitialize().

AW00148804000 C Samples

pylon SDK Samples Manual 58

Then, PylonEnumerateDevices() is called to enumerate all attached camera devices.

Before using a camera device, it must be opened by calling PylonDeviceOpen(). This allows us to
set parameters and grab images.

In this sample, we will use the Continuous acquisition mode, i.e., the camera delivers images
continuously. We do this by calling PylonDeviceFeatureFromString() while passing the device
handle and the camera parameters "AcquisitionMode" and "Continuous" as arguments.

To make use of camera events, we enable camera event reporting and select the Exposure End
event.

To handle events, we create and prepare an event grabber by calling
PylonDeviceGetEventGrabber() while passing the device and event grabber handles as
arguments. We tell the grabber how many buffers to use by calling
PylonEventGrabberSetNumBuffers().

In PylonEventGrabberGetWaitObject(), we retrieve the wait object that is associated with the event
grabber. The event will be notified when an event message has been received.

To extract the event data from an event message, an event adapter is used. We create it by calling
PylonDeviceCreateEventAdapter().

We then register a callback function for the ExposureEndEventFrameID parameter by getting it
from the device node map and calling GenApiNodeRegisterCallback().

We create a container (PylonWaitObjectsCreate) and put the wait objects for image and event
data into it (PylonWaitObjectsAddMany).

Images are grabbed using a stream grabber. For each camera device, a stream grabber is created
by calling PylonDeviceGetStreamGrabber() and passing the device handle and the stream grabber
handle as arguments. A handle for the stream grabber's wait object is retrieved with
PylonStreamGrabberGetWaitObject(). The wait object allows waiting for buffers to be filled with
grabbed data.

We must also tell the stream grabber the number and size of the buffers we are using. This is
done with PylonStreamGrabberSetMaxNumBuffer() and PylonStreamGrabberSetMaxBufferSize().
By calling PylonStreamGrabberPrepareGrab(), we allocate the resources required for grabbing.
After this, critical parameters that impact the payload size must not be changed until
PylonStreamGrabberFinishGrab() is called.

Before using the buffers for grabbing, they must be registered and queued into the stream
grabber's input queue. This is done with PylonStreamGrabberRegisterBuffer() and
PylonStreamGrabberQueueBuffer().

To enable image acquisition, PylonDeviceExecuteCommandFeature() is called with the device
handle and the AcquisitionStart camera parameter as arguments.

In PylonWaitObjectsWaitForAny(), we wait for either an image buffer grabbed or an event received
with a timeout of 1000 ms.

Grabbed images are retrieved by calling PylonStreamGrabberRetrieveResult().

Grabbed events are retrieved by calling PylonEventGrabberRetrieveEvent().

Once finished with the processing, we re-queue the buffer to be filled again by calling
PylonStreamGrabberQueueBuffer().

When image acquisition is stopped, we must perform a cleanup for all cameras, i.e., all wait
objects must be removed, all allocated buffer memory must be released, and the stream grabber
as well as the camera device handles must be closed and destroyed.

AW00148804000 C Samples

pylon SDK Samples Manual 59

Finally, we shut down the pylon runtime system by calling PylonTerminate(). No pylon functions
should be called after calling PylonTerminate().

Applicable Interfaces

GigE Vision, USB3 Vision

 Back to top

AW00148804000 C Samples

pylon SDK Samples Manual 60

3.5 GenApiParam

This sample illustrates how to access the different camera parameter types. It uses the low-level
functions provided by GenApiC instead of those provided by pylonC.

Code

Before using any pylon methods, the pylon runtime is initialized by calling PylonInitialize().

Then, PylonEnumerateDevices() is called to enumerate all attached camera devices.

Before using a camera device, it must be opened. Open it by calling PylonDeviceOpen() for setting
parameters afterwards.

The following helper functions are used:

• demonstrateAccessibilityCheck(): Demonstrates how to check the accessibility of a camera
feature, e.g., whether the camera feature "BinningVertical" is implemented and available
for the current camera.

• demonstrateIntFeature(): Demonstrates how to handle integer camera parameters, e.g.,
the camera feature "Width".

• demonstrateFloatFeature(): Demonstrates how to handle floating point camera
parameters, e.g., the camera feature "Gamma".

• demonstrateBooleanFeature(): Demonstrates how to handle boolean camera parameters,
e.g., the camera feature "GammaEnable".

• demonstrateFromStringToString(): Demonstrates how to read or set camera features as a
string. Regardless of the parameter's type, any parameter value can be retrieved as a
string. In addition, each parameter can be set by passing in a string. This function
illustrates how to set and get the integer parameter "Width" as string.

• demonstrateEnumFeature(): Demonstrates how to handle enumeration camera
parameters, e.g., the camera feature "PixelFormat".

• demonstrateEnumIteration(): Demonstrates how to iterate enumeration entries, e.g., the
enumeration entries of the camera feature "PixelFormat".

AW00148804000 C Samples

pylon SDK Samples Manual 61

• demonstrateCommandFeature(): Demonstrates how to execute commands, e.g., load the
camera factory settings by executing the "UserSetLoad" command.

• demonstrateCategory(): Demonstrates category node. The function traverses the feature
tree, displaying all categories and all features.

Finally, a cleanup is done, e.g., the pylon device is closed and released. The pylon runtime system
is shut down by calling PylonTerminate(). No pylon functions should be called after calling
PylonTerminate().

Applicable Interfaces

GigE Vision, USB3 Vision, Camera Link, BCON for LVDS, CXP

 Back to top

AW00148804000 C Samples

pylon SDK Samples Manual 62

3.6 GrabTwoCameras

This sample illustrates how to grab images and process images using multiple cameras
simultaneously.

The sample uses a pool of buffers that are passed to a stream grabber to be filled with image data.
Once a buffer is filled and ready for processing, the buffer is retrieved from the stream grabber,
processed, and passed back to the stream grabber to be filled again. Buffers retrieved from the
stream grabber are not overwritten as long as they are not passed back to the stream grabber.

Code

Before using any pylon methods, the pylon runtime is initialized by calling PylonInitialize().

Then, PylonEnumerateDevices() is called to enumerate all attached camera devices.

Before using a camera device, it must be opened by calling PylonDeviceOpen(). This allows us to
set parameters and grab images.

Images are grabbed using a stream grabber. For each camera device, a stream grabber is created
by calling PylonDeviceGetStreamGrabber() and passing the device handle and the stream grabber
handle as arguments. A handle for the stream grabber's wait object is retrieved within
PylonStreamGrabberGetWaitObject(). The wait object allows waiting for buffers to be filled with
grabbed data.

We must also tell the stream grabber the number and size of the buffers we are using. This is
done with PylonStreamGrabberSetMaxNumBuffer() and PylonStreamGrabberSetMaxBufferSize().
By calling PylonStreamGrabberPrepareGrab() we allocate the resources required for grabbing.
After this, critical parameters that impact the payload size must not be changed until
PylonStreamGrabberFinishGrab() is called.

Before using the buffers for grabbing, they must be registered and queued into the stream
grabber's input queue. This is done with PylonStreamGrabberRegisterBuffer() and
PylonStreamGrabberQueueBuffer().

We call PylonDeviceExecuteCommandFeature() with the device handle and the AcqusitionStart
camera parameter as arguments on each camera to start the image acquisition.

AW00148804000 C Samples

pylon SDK Samples Manual 63

In PylonWaitObjectsWaitForAny(), we wait for the next buffer to be filled with a timeout of 1000
ms. The grabbed image is retrieved by calling PylonStreamGrabberRetrieveResult().

With PylonImageWindowDisplayImageGrabResult(), images are displayed in different image
windows.

Once finished with the processing, we re-queue the current grabbed buffer to be filled again by
calling PylonStreamGrabberQueueBuffer().

When image acquisition is stopped, we must perform a cleanup for all cameras, i.e., all wait
objects must be removed, all allocated buffer memory must be released, and the stream grabber
as well as the camera device handles must be closed and destroyed.

Finally, we shut down the pylon runtime system by calling PylonTerminate(). No pylon functions
should be called after calling PylonTerminate().

Applicable Interfaces

GigE Vision, USB3 Vision, BCON for LVDS, CXP

 Back to top

AW00148804000 C Samples

pylon SDK Samples Manual 64

3.7 ImageDecompressor

This sample illustrates how to enable and use the Basler Compression Beyond feature in Basler
ace 2 Pro GigE and Basler ace 2 Pro USB 3.0 cameras.

This sample also demonstrates how to create and configure a pylon decompressor and use it to
decompress the compressed camera images.

Code

Before using any pylon methods, the pylon runtime is initialized by calling PylonInitialize().

Then, PylonEnumerateDevices() is called to enumerate all attached camera devices.

Before using a camera device, it must be opened by calling PylonDeviceOpen(). This allows us to
set parameters, e.g., to set the ImageCompressionMode parameter to On or Off.

The configureCompression() function is used either to switch off the Compression Beyond feature
or to configure the camera for lossless compression. In addition, you can also enable and use
lossy compression.

The image decompressor is created by passing the decompressor handle to
PylonImageDecompressorCreate().

To be able to decompress image data, we have to set the compression descriptor first. This is
done by calling PylonImageDecompressorSetCompressionDescriptor() while passing the
decompressor handle, the buffer used to store the compression descriptor, and the size of the
compression descriptor as arguments.

Image grabbing is typically done by using a stream grabber. As we grab a single image in this
sample, we allocate a single image buffer (malloc) without setting up a stream grabber.

The camera is set to Single Frame acquisition mode. We grab one single frame in a loop by calling
PylonDeviceGrabSingleFrame(). We wait up to 2000 ms for the image to be grabbed.

AW00148804000 C Samples

pylon SDK Samples Manual 65

As the information about the compressed image data is transmitted as chunk data, we retrieve this
information by calling PylonImageDecompressorGetCompressionInfo().

The decompression of the image data is done in PylonImageDecompressorDecompressImage().
When decompression is complete, information about the resulting frame rate, i.e., possible speed
increases and the compression ratio applied, is printed in the terminal.

With PylonImageWindowDisplayImageGrabResult(), images are displayed in an image window.

At application exit, a cleanup for the camera device must be done, i.e., all allocated buffer memory
must be released and the decompressor and the camera device handles must be freed and
destroyed.

Applicable Interfaces

GigE Vision, USB3 Vision

 Back to top

AW00148804000 C Samples

pylon SDK Samples Manual 66

3.8 OverlappedGrab

This sample illustrates how to grab and process images asynchronously, i.e., while the application
is processing a buffer, the acquisition of the next buffer is done in parallel. The sample uses a pool
of buffers that are passed to a stream grabber to be filled with image data. Once a buffer is filled
and ready for processing, the buffer is retrieved from the stream grabber, processed, and passed
back to the stream grabber to be filled again. Buffers retrieved from the stream grabber are not
overwritten as long as they are not passed back to the stream grabber.

Code

Before using any pylon methods, the pylon runtime is initialized by calling PylonInitialize().

Then, PylonEnumerateDevices() is called to enumerate all attached camera devices.

AW00148804000 C Samples

pylon SDK Samples Manual 67

Before using a camera device, it must be opened by calling PylonDeviceOpen(). This allows us to
set parameters and grab images.

Images are grabbed using a stream grabber. For each camera device, a stream grabber is created
by calling PylonDeviceGetStreamGrabber() and passing the device handle and the stream grabber
handle as arguments. A handle for the stream grabber's wait object is retrieved within
PylonStreamGrabberGetWaitObject(). The wait object allows waiting for buffers to be filled with
grabbed data.

We must also tell the stream grabber the number and size of the buffers we are using. This is
done with PylonStreamGrabberSetMaxNumBuffer() and PylonStreamGrabberSetMaxBufferSize().
By calling PylonStreamGrabberPrepareGrab() we allocate the resources required for grabbing.
After this, critical parameters that impact the payload size must not be changed until
PylonStreamGrabberFinishGrab() is called.

Before using the buffers for grabbing, they must be registered and queued into the stream
grabber's input queue. This is done with PylonStreamGrabberRegisterBuffer() and
PylonStreamGrabberQueueBuffer().

Call PylonDeviceExecuteCommandFeature() with the device handle and the AcqusitionStart
camera parameter as arguments on each camera to start the image acquisition.

In PylonWaitObjectsWait() we wait for the next buffer to be filled with a timeout of 1000 ms. The
grabbed image is retrieved by calling PylonStreamGrabberRetrieveResult().

With PylonImageWindowDisplayImageGrabResult() , images are displayed in an image window.

Once finished with the processing, we re-queue the current grabbed buffer to be filled again by
calling PylonStreamGrabberQueueBuffer().

When image acquisition is stopped, we must perform a cleanup for all cameras, i.e., all allocated
buffer memory must be released and the stream grabber as well as the camera device handles
must be closed and destroyed.

Finally, we shut down the pylon runtime system by calling PylonTerminate(). No pylon functions
should be called after calling PylonTerminate().

Applicable Interfaces

GigE Vision, USB3 Vision, BCON for LVDS, CXP

 Back to top

AW00148804000 C Samples

pylon SDK Samples Manual 68

3.9 ParametrizeCamera

This sample illustrates how to read and write different camera parameter types.

Code

Before using any pylon methods, the pylon runtime is initialized by calling PylonInitialize().

Then, PylonEnumerateDevices() is called to enumerate all attached camera devices.

Before using a camera device, it must be opened by calling PylonDeviceOpen(). This allows us to
set parameters.

The following helper functions are used:

• demonstrateAccessibilityCheck(): Demonstrates how to check the accessibility of a camera
feature, e.g., whether the camera feature "BinningVertical" is implemented and available
for the current camera.

• demonstrateIntFeature(): Demonstrates how to handle integer camera parameters, e.g.,
the camera feature "Width".

• demonstrateInt32Feature(): Demonstrates how to handle integer camera parameters, e.g.,
the camera feature "Height".

• demonstrateFloatFeature(): Demonstrates how to handle floating point camera
parameters, e.g., the camera feature "Gamma".

• demonstrateBooleanFeature(): Demonstrates how to handle boolean camera parameters,
e.g., the camera feature "GammaEnable".

• demonstrateFromStringToString(): Demonstrates how to read or set camera features as a
string. Regardless of the parameter's type, any parameter value can be retrieved as a
string. In addition, each parameter can be set by passing in a string. This function
illustrates how to set and get the integer parameter "Width" as string.

• demonstrateEnumFeature(): Demonstrates how to handle enumeration camera
parameters, e.g., the camera feature "PixelFormat".

AW00148804000 C Samples

pylon SDK Samples Manual 69

• demonstrateCommandFeature(): Demonstrates how to execute commands, e.g., load the
camera factory settings by executing the "UserSetLoad" command.

Finally, a cleanup is done, e.g., the pylon device is closed and released. The pylon runtime system
is shut down by calling PylonTerminate(). No pylon functions should be called after calling
PylonTerminate().

Applicable Interfaces

GigE Vision, USB3 Vision, Camera Link, BCON for LVDS, CXP

 Back to top

AW00148804000 C Samples

pylon SDK Samples Manual 70

3.10 SimpleGrab

This sample illustrates how to use the PylonDeviceGrabSingleFrame() convenience method for
grabbing images in a loop. PylonDeviceGrabSingleFrame() grabs one single frame in single frame
mode.

Grabbing in Single Frame acquisition mode is the easiest way to grab images.

Note: In Single Frame mode, the maximum frame rate of the camera can't be achieved. The
maximum frame rate can be achieved by setting the camera to the Continuous frame acquisition
mode and by grabbing in overlapped mode, i.e., image acquisition begins while the camera is still
processing the previous image. This is illustrated in the OverlappedGrab sample program.

Code

Before using any pylon methods, the pylon runtime is initialized by calling PylonInitialize().

Then, PylonEnumerateDevices() is called to enumerate all attached camera devices.

Before using a camera device, it must be opened by calling PylonDeviceOpen(). This allows us to
set parameters and grab images.

Image grabbing is typically done by using a stream grabber. As we grab a single image in this
sample, we allocate a single image buffer (malloc) without setting up a stream grabber.

The camera is set to Single Frame acquisition mode. We grab one single frame in a loop by calling
PylonDeviceGrabSingleFrame(). We wait up to 500 ms for the image to be grabbed.

With PylonImageWindowDisplayImageGrabResult(), images are displayed in an image window.

When the image acquisition is stopped, a cleanup for the camera device must be done, i.e., all
allocated buffer memory must be released and the camera device handles must be closed and
destroyed.

AW00148804000 C Samples

pylon SDK Samples Manual 71

Finally, we shut down the pylon runtime system by calling PylonTerminate(). No pylon functions
should be called after calling PylonTerminate().

Applicable Interfaces

GigE Vision, USB3 Vision, BCON for LVDS, CXP

 Back to top

AW00148804000 C Samples

pylon SDK Samples Manual 72

3.11 SurpriseRemoval

This sample program demonstrates how to be informed about a sudden removal of a device.

Note: If you build this sample in debug mode and run it using a GigE camera device, pylon will set
the heartbeat timeout to 5 minutes. This is done to allow debugging and single-stepping without
losing the camera connection due to missing heartbeats. However, with this setting, it would take 5
minutes for the application to notice that a GigE device has been disconnected. As a workaround,
the heartbeat timeout is set to 1000 ms.

Code

Before using any pylon methods, the pylon runtime is initialized by calling PylonInitialize().

Then, PylonEnumerateDevices() is called to enumerate all attached camera devices.

Before using a camera device, it must be opened by calling PylonDeviceOpen(). This allows us to
set parameters and grab images.

In PylonDeviceRegisterRemovalCallback(), we register the callback function
removalCallbackFunction(). This function will be called when the opened device has been
removed.

The setHeartbeatTimeout() function is used to adjust the heartbeat timeout. For GigE cameras, the
application periodically sends heartbeat signals to the camera to keep the connection to the
camera alive. If the camera doesn't receive heartbeat signals within the time period specified by
the heartbeat timeout counter, the camera resets the connection. When the application is stopped
by the debugger, the application cannot create the heartbeat signals. For that reason, the pylon
runtime extends the heartbeat timeout when debugging to 5 minutes. For GigE cameras, we will
set the heartbeat timeout to a shorter period before testing the callbacks.

The heartbeat mechanism is also used for detection of device removal. When the pylon runtime
doesn't receive acknowledges for the heartbeat signal, it is assumed that the device has been
removed. A removal callback will be fired in that case. By decreasing the heartbeat timeout, the
surprise removal will be noticed earlier.

AW00148804000 C Samples

pylon SDK Samples Manual 73

When we exit the application, a cleanup for the camera device must be done, i.e., the removal
callback must be deregistered and the camera device handle must be closed and destroyed.

Finally, we shut down the pylon runtime system by calling PylonTerminate(). No pylon functions
should be called after calling PylonTerminate().

Applicable Interfaces

GigE Vision, USB3 Vision, Camera Link, BCON for LVDS

 Back to top

AW00148804000 .NET Samples

pylon SDK Samples Manual 74

4 .NET Samples

4.1 DeviceRemovalHandling

This sample program demonstrates how to be informed about the removal of a camera device. It
also shows how to reconnect to a removed device.

Note: If you build this sample in debug mode and run it using a GigE camera device, pylon will set
the heartbeat timeout to 5 minutes. This is done to allow debugging and single-stepping without
losing the camera connection due to missing heartbeats. However, with this setting, it would take 5
minutes for the application to notice that a GigE device has been disconnected. As a workaround,
the heartbeat timeout is set to 1000 ms.

AW00148804000 .NET Samples

pylon SDK Samples Manual 75

Code

The Camera class is used to create a camera object that opens the first camera device found. This
class also provides other constructors for selecting a specific camera device, e.g., based on the
device name, or serial number.

The Configuration class is used to set the acquisition mode to free running continuous acquisition
when the camera is opened.

For demonstration purposes, the event handler OnConnectionLost() is added. This event is always
called on a separate thread when the physical connection to the camera has been lost.

The PLTransportLayer class provides a list of all available transport layer parameters, e.g., GigE
or USB 3.0 parameters. It can be used to manually set the heartbeat timeout to a shorter value
when using GigE cameras.

The ImageWindow class is used to display the grabbed image on the screen.

Applicable Interfaces

GigE Vision, USB3 Vision, Camera Link

 Back to top

AW00148804000 .NET Samples

pylon SDK Samples Manual 76

4.2 Grab

This sample illustrates how to grab images and process images asynchronously. This means that
while the application is processing a buffer, the acquisition of the next buffer is done in parallel.

The sample uses a pool of buffers. The buffers are allocated automatically. Once a buffer is filled
and ready for processing, the buffer is retrieved from the stream grabber as part of a grab result.
The grab result is processed and the buffer is passed back to the stream grabber by disposing the
grab result. The buffer is reused and refilled.

A buffer retrieved from the stream grabber as a grab result is not overwritten in the background as
long as the grab result is not disposed.

AW00148804000 .NET Samples

pylon SDK Samples Manual 77

Code

The Camera class is used to create a camera object that opens the first camera device found. This
class also provides other constructors for selecting a specific camera device, e.g., based on the
device name, or serial number.

The Configuration class is used to set the acquisition mode to free running continuous acquisition
when the camera is opened.

The PLCameraInstance class provides a list of all parameter names available for the Camera
class instance. It is used to set the parameter MaxNumBuffer that controls the amount of buffers
allocated for grabbing.

The ImageWindow class is used to display the grabbed image on the screen.

Applicable Interfaces

GigE Vision, USB3 Vision, CXP

 Back to top

AW00148804000 .NET Samples

pylon SDK Samples Manual 78

4.3 Grab_CameraEvents

Basler USB3 Vision and GigE Vision cameras can send event messages. For example, when a
sensor exposure has finished, the camera can send an Exposure End event to the computer. The
event can be received by the computer before the image data for the finished exposure has been
completely transferred. This sample illustrates how to be notified when camera event message
data has been received.

The event messages are retrieved automatically and processed by the Camera classes.

The information contained in event messages is exposed as parameter nodes in the camera node
map and can be accessed like standard camera parameters. These nodes are updated when a
camera event is received. You can register camera event handler objects that are triggered when
event data has been received.

The handler object provides access to the changed parameter, but not to its source (the camera).

In this sample, we solve this problem with a derived camera class with a handler object as
member.

These mechanisms are demonstrated for the Exposure End event.

The Exposure End event carries the following information:

• EventExposureEndFrameID (USB) / ExposureEndEventFrameID (GigE): Number of the
image that has been exposed.

• EventExposureEndTimestamp (USB) / ExposureEndEventTimestamp (GigE): Time when
the event was generated.

This sample shows how to register event handlers that indicate the arrival of events sent by the
camera. For demonstration purposes, different handlers are registered for the same event.

AW00148804000 .NET Samples

pylon SDK Samples Manual 79

Code

The EventCamera class is derived from the Camera class. It is used to create a camera object that
opens the first camera device found. This class provides different methods for camera
configuration and event handling. Configure() is used to configure the camera for event trigger and
register exposure end event handler.

The Configuration class is used to configure the camera for software trigger mode to demonstrate
synchronous processing of the grab results.

The PLCameraInstance class provides a list of all parameter names available for the Camera
class instance. Here, it is used to enable event notification.

The PLGigECamera and PLUsbCamera camera classes are used to access GigE and USB3
Vision specific camera features related to the Exposure End event.

The PLCamera class is used to enable Exposure End event transmission.

OnEventExposureEndData() is used to register an event handler to receive the changed FrameID
value of the exposure end event.

Note: Only short processing tasks should be performed by this method. Otherwise, the event
notification will block the processing of images.

The ImageWindow class is used to display the grabbed image on the screen.

Applicable Interfaces

GigE Vision, USB3 Vision

 Back to top

AW00148804000 .NET Samples

pylon SDK Samples Manual 80

4.4 Grab_ChunkImage

Basler cameras supporting the Data Chunk feature can generate supplementary image data, e.g.,
frame count, time stamp, or CRC checksums, and append it to each acquired image.

This sample illustrates how to enable the Data Chunk feature, how to grab images, and how to
process the appended data. When the camera is in chunk mode, it transfers data blocks
partitioned into chunks. The first chunk is always the image data. If one or more data chunks are
enabled, these chunks are transmitted as chunk 2, 3, and so on.

Code

The Camera class is used to create a camera object that opens the first camera device found. This
class also provides other constructors for selecting a specific camera device, e.g., based on the
device name, or serial number.

AW00148804000 .NET Samples

pylon SDK Samples Manual 81

The Configuration class is used to set the acquisition mode to free running continuous acquisition
when the camera is opened.

The PLCamera class is used to enable the chunk mode in general as well as specific camera
chunks like timestamp, frame counter, CRC checksum, etc.

The ImageWindow class is used to display the grabbed image on the screen.

Applicable Interfaces

GigE Vision, USB3 Vision

 Back to top

AW00148804000 .NET Samples

pylon SDK Samples Manual 82

4.5 Grab_MultiCast

This sample demonstrates how to open a camera in multicast mode and how to receive a
multicast stream.

Two instances of this application must be started simultaneously on different computers.

The first application started on computer A acts as the controlling application and has full access
to the GigE camera.

The second instance started on computer B opens the camera in monitor mode. This instance
can't control the camera but can receive multicast streams.

To get the sample running, start the application on computer A in control mode. After computer A
has begun to receive frames, start a second instance of the application on computer B in monitor
mode.

AW00148804000 .NET Samples

pylon SDK Samples Manual 83

Code

The Camera class is used to create a camera object that opens the first GigE camera device
found. This class also provides other constructors for selecting a specific camera device, e.g.,
based on the device name, or serial number.

The PLCameraInstance class provides a list of all parameter names available for the Camera
class instance. It is used to open the camera in control or monitor mode depending on the user’s
input. While being opened in control mode, the control user application can adjust camera
parameters and control image acquisition. While being opened in monitor mode, the monitor
customer application can only read camera features and receive image data.

The PLGigEStream class provides a list of all parameter names available for the GigE stream
grabber. It is used to configure the camera transmission type, e.g., for multicasting.

The PLGigECamera class provides a list of all parameter names available for GigE cameras only.
It is used to configure the image area of interest and set the pixel data format.

The ImageWindow class is used to display the grabbed image on the screen.

Applicable Interfaces

GigE Vision

 Back to top

AW00148804000 .NET Samples

pylon SDK Samples Manual 84

4.6 Grab_Strategies

This sample demonstrates the use of the Camera grab strategies GrabStrategy.OneByOne and
GrabStrategy.LatestImages.

When the "OneByOne" grab strategy is used, images are processed in the order of their
acquisition. This strategy can be useful when all grabbed images need to be processed, e.g., in
production and quality inspection applications.

The "LatestImages" strategy can be useful when the acquired images are only displayed on
screen. If the processor has been busy for a while and images could not be displayed
automatically, the latest image is displayed when processing time is available again.

Code

The Camera class is used to create a camera object that opens the first camera device found. This
class also provides other constructors for selecting a specific camera device, e.g., based on the
device name, or serial number.

The PLCameraInstance class provides a list of all parameter names available for the Camera
class instance. It is used to enable the grabbing of camera events in general and control the buffer
size of the output queue.

The Configuration class is used to configure the camera for software trigger mode.

The PLStream class provides a list of all parameter names available for the stream grabber. It is
used to set the MaxNumBuffer parameter that controls the count of buffers allocated for grabbing.
The default value of this parameter is 10.

The grab strategies GrabStrategy.OneByOne and GrabStrategy.LatestImages are applied by
passing them as an argument to Start(), which is called on the stream grabber.

Applicable Interfaces

GigE Vision, USB3 Vision, CXP

 Back to top

AW00148804000 .NET Samples

pylon SDK Samples Manual 85

4.7 Grab_UsingActionCommand

This sample shows how to issue a GigE Vision action command to multiple cameras. By using an
action command, multiple cameras can be triggered at the same time as opposed to software
triggering where each camera has to be triggered individually.

To make the configuration of multiple cameras and the execution of the action commands easier,
this sample uses the ActionCommandTrigger class.

Code

The CameraFinder class provides a list of all found GigE camera devices.

The ActionCommandTrigger class provides simplified access to GigE action commands. It is used
to configure the DeviceKey, GroupKey, and GroupMask parameters for cameras automatically. It
also configures the camera's trigger and sets the trigger source to Action1. In addition, there are
some static methods for issuing and scheduling an action command.

Applicable Interfaces

GigE Vision

 Back to top

AW00148804000 .NET Samples

pylon SDK Samples Manual 86

4.8 Grab_UsingBufferFactory

This sample demonstrates how to use a user-provided buffer factory.

Using a buffer factory is optional and intended for advanced use cases only. A buffer factory is
only necessary if you want to grab into externally supplied buffers.

Code

The MyBufferFactory class demonstrates how to use a user-provided buffer factory.

The buffer factory must be created before streaming is started in order to allocate the buffer
memory.

Note that the .NET garbage collector automatically manages the release of allocated memory for
your application.

The Camera class is used to create a camera object that opens the first camera device found. This
class also provides other constructors for selecting a specific camera device, e.g., based on the
device name or serial number.

Applicable Interfaces

GigE Vision, USB3 Vision, CXP

 Back to top

AW00148804000 .NET Samples

pylon SDK Samples Manual 87

4.9 Grab_UsingExposureEndEvent

This sample shows how to use the Exposure End event to speed up the image acquisition. For
example, when a sensor exposure is finished, the camera can send an Exposure End event to the
computer. The computer can receive the event before the image data has been completely
transferred. This allows you to avoid unnecessary delays, e.g., when an imaged object is moved
further before the related image data transfer is complete.

Code

The Camera class is used to create a camera object that opens the first camera device found. This
class also provides other constructors for selecting a specific camera device, e.g., based on the
device name, or serial number.

The helper function Configure() is used to configure the camera for sending events.

The PLCameraInstance class provides a list of all parameter names available for the Camera
class instance. Here, it is used to enable event notification.

The PLCamera class is used to configure and enable the sending of Exposure End, Event Overrun
and Frame Start Overtrigger events.

In this sample, different event handlers are used to receive the grabbed image data and the
camera events.

Applicable Interfaces

GigE Vision, USB3 Vision

 Back to top

AW00148804000 .NET Samples

pylon SDK Samples Manual 88

4.10 Grab_UsingGrabLoopThread

This sample illustrates how to grab and process images using the grab loop thread provided by the
Camera class.

Code

The Camera class is used to create a camera object that opens the first camera device found. This
class also provides other constructors for selecting a specific camera device, e.g., based on the
device name, or serial number.

The PLCameraInstance class provides a list of all parameter names available for the Camera
class instance. It is used to enable the grabbing of camera events in general and control the buffer
size of the output queue.

The Configuration class is used to configure the camera for software trigger mode.

AW00148804000 .NET Samples

pylon SDK Samples Manual 89

Image grabbing is started by using an additional grab loop thread provided by the stream grabber.
This is done by setting the grabLoopType parameter to GrabLoop.ProvidedByStreamGrabber. The
grab results are delivered to the image event handler OnImageGrabbed. The default grab strategy
GrabStrategy.OneByOne is used.

The ImageWindow class is used to display the grabbed image on the screen.

The ImagePersistence class is used to save the grabbed image to a Bitmap image file.

Applicable Interfaces

GigE Vision, USB3 Vision, CXP

 Back to top

AW00148804000 .NET Samples

pylon SDK Samples Manual 90

4.11 Grab_UsingSequencer

This sample shows how to grab images using the Sequencer feature of a camera. Three
sequence sets are used for image acquisition. Each sequence set uses a different image height.

Code

The Camera class is used to create a camera object that opens the first camera device found. This
class also provides other constructors for selecting a specific camera device, e.g., based on the
device name, or serial number.

The Configuration class is used to configure the camera for software trigger mode.

AW00148804000 .NET Samples

pylon SDK Samples Manual 91

The PLCamera class is used to enable and configure the camera Sequencer feature.

The ImageWindow class is used to display the grabbed image on the screen.

Applicable Interfaces

GigE Vision, USB3 Vision

 Back to top

AW00148804000 .NET Samples

pylon SDK Samples Manual 92

4.12 GUISampleMultiCam

This sample demonstrates how to operate multiple cameras using an Windows Forms GUI
together with the pylon .NET API.

The sample demonstrates different techniques for opening a camera, e.g., by using its serial
number or user device ID. It also contains an image-processing example and shows how to handle
device disconnections.

The sample covers single and continuous image acquisition using software as well as hardware
triggering.

Code

When the Discover Cameras button is clicked, the UpdateDeviceList() function in the MainForm
class is called, which in turn calls the CameraFinder.Enumerate() function to enumerate all
attached devices.

By clicking the Open Selected button, the SelectByCameraInfo() function is called to create a new
device info object.

AW00148804000 .NET Samples

pylon SDK Samples Manual 93

Then, the OpenCamera() function in the GUICamera class is called to create a camera object and
open the selected camera. In addition, event handlers for image grabbing and device removal are
registered.

Cameras can be opened by clicking the Open by SN (SN = serial number) or Open by User ID
buttons. The latter assumes that you have already assigned a user ID to the given camera, e.g., in
the pylon Viewer or via the pylon API.

After a camera has been opened, the following GUI elements become available:

 Single Shot, Continuous Shot, Stop, and Execute (for executing a software trigger) buttons

 Exposure Time and Gain sliders

 Pixel Format, Trigger Mode, and Trigger Source drop-down lists

 Invert Pixels checkbox

By clicking the Single Shot button, the SingleShot() function is called. To grab a single image, the
stream grabber Start() function is called with the following arguments:

camera.StreamGrabber.Start(1, GrabStrategy.OneByOne, GrabLoop.ProvidedByStreamGrabber);

When the image is received, pylon will call the OnImageGrabbed() handler and the image will be
displayed.

By clicking the Continuous Shot button, the ContinuousShot() function is called. To grab images
continuously, the stream grabber Start() function is called with the following arguments:

camera.StreamGrabber.Start(GrabStrategy.OneByOne, GrabLoop.ProvidedByStreamGrabber);

In this case, the camera will grab images until the stream grabber Stop() function is called.

When a new image is received, pylon will call the OnImageGrabbed() handler and the grabbed
images will be displayed continuously.

This sample also demonstrates the triggering of cameras by using a software trigger. For this
purpose, the Trigger Mode parameter has to be set to On, and the Trigger Source parameter
has to be set to Software. When starting a single or a continuous image acquisition, the camera
will then be waiting for a software trigger.

By clicking the Execute button, the SoftwareTrigger() function will be called, which will execute a
software trigger.

For triggering the camera by hardware trigger, set Trigger Mode to On and Trigger Source to,
e.g., Line1. When starting a single or a continuous image acquisition, the camera will then be
waiting for a hardware trigger.

By selecting the Invert Pixels checkbox, an example of image processing will be shown. In the
example, the pixel data will be inverted. This is done in the InvertColors() function, which is called
from OnImageGrabbed().

Finally, this sample also shows the use of Device Removal callbacks. If an already opened camera
is disconnected, the OnDeviceRemoved() function is called. In turn, the OnCameraDisconnected()
function will be called to inform the user about the disconnected camera.

Applicable Interfaces

GigE Vision, USB3 Vision, CXP

 Back to top

AW00148804000 .NET Samples

pylon SDK Samples Manual 94

4.13 ParametrizeCamera

This sample illustrates how to read and write different camera parameter types.

For camera configuration and for accessing other parameters, the pylon API uses the technologies
defined by the GenICam standard (http://www.genicam.org). The standard also defines a format
for camera description files.

These files describe the configuration interface of GenICam compliant cameras. The description
files are written in XML and describe camera registers, their interdependencies, and all other
information needed to access high-level features. This includes features such as Gain, Exposure
Time, or Pixel Format. The features are accessed by means of low level register read and write
operations.

The elements of a camera description file are represented as parameter objects. For example, a
parameter object can represent a single camera register, a camera parameter such as Gain, or a
set of parameter values.

Code

The Camera class is used to create a camera object that opens the first camera device found. This
class also provides other constructors for selecting a specific camera device, e.g., based on the
device name, or serial number.

The PLCamera class is used to configure camera features such as Width, Height, OffsetX,
OffsetY, PixelFormat, etc.

The PLUsbCamera class is used to configure features compatible with the SFNC version 2.0, e.g.,
the feature Gain available on USB3 Vision cameras.

Applicable Interfaces

GigE Vision, USB3 Vision, Camera Link, CXP

 Back to top

http://www.genicam.org/

AW00148804000 .NET Samples

pylon SDK Samples Manual 95

4.14 ParametrizeCamera_AutoFunctions

This sample illustrates how to use the Auto Functions feature of Basler cameras.

Note: Different camera families implement different versions of the Standard Feature Naming
Convention (SFNC). That's why the name and the type of the parameters used can be different.

Code

The Camera class is used to create a camera object that opens the first camera device found. This
class also provides other constructors for selecting a specific camera device, e.g., based on the
device name, or serial number.

The PLCamera class is used to demonstrate the configuration of different camera features:

• AutoGainOnce(): Carries out luminance control by using the Gain Auto auto function in the
Once operating mode.

AW00148804000 .NET Samples

pylon SDK Samples Manual 96

• AutoGainContinuous(): Carries out luminance control by using the Gain Auto auto function
in the Continuous operating mode.

• AutoExposureOnce(): Carries out luminance control by using the Exposure Auto auto
function in the Once operating mode.

• AutoExposureContinuous(): Carries out luminance control by using the Exposure Auto
auto function in the Continuous operating mode.

• AutoWhiteBalance(): Carries out white balance using the Balance White Auto auto
function. Note: Only color cameras support this auto function.

Applicable Interfaces

GigE Vision, USB3 Vision

 Back to top

AW00148804000 .NET Samples

pylon SDK Samples Manual 97

4.15 ParametrizeCamera_AutomaticImageAdjustment

This sample illustrates how to mimic the "Automatic Image Adjustment" button of the Basler pylon
Viewer.

Code

The Camera class is used to create a camera object that opens the first camera device found. This
class also provides other constructors for selecting a specific camera device, e.g., based on the
device name, or serial number.

AW00148804000 .NET Samples

pylon SDK Samples Manual 98

The PLCamera class is used to demonstrate the usage of automatic image adjustment features
like GainAuto, ExposureAuto and BalanceWhiteAuto. In addition, features related to the color
image quality like Gamma and LightSourcePreset are used.

The ImageWindow class is used to display the grabbed image on the screen.

Applicable Interfaces

GigE Vision, USB3 Vision

 Back to top

AW00148804000 .NET Samples

pylon SDK Samples Manual 99

4.16 ParametrizeCamera_Configurations

This sample shows how to use configuration event handlers by applying the standard
configurations and registering sample configuration event handlers.

If the configuration event handler is registered, the registered methods are called when the state of
the camera objects changes, e.g., when the camera object is opened or closed. In pylon.NET, a
configuration event handler is a method that parametrizes the camera.

Code

The Camera class is used to create a camera object that opens the first camera device found. This
class also provides other constructors for selecting a specific camera device, e.g., based on the
device name, or serial number.

The Configuration class is used to demonstrate the usage of different configuration event
handlers.

The Configuration.AcquireContinuous handler is a standard configuration event handler to
configure the camera for continuous acquisition.

The Configuration.SoftwareTrigger handler is a standard configuration event handler to configure
the camera for software triggering.

The Configuration.AcquireSingleFrame handler is a standard configuration event handler to
configure the camera for single frame acquisition.

The PixelFormatAndAoiConfiguration handler is a custom event handler for pixel format and area
of interest configuration.

Applicable Interfaces

GigE Vision, USB3 Vision, CXP

 Back to top

AW00148804000 .NET Samples

pylon SDK Samples Manual 100

4.17 ParametrizeCamera_LoadAndSave

This sample application demonstrates how to save or load the features of a camera to or from a
file.

Code

The Camera class is used to create a camera object that opens the first camera device found. This
class also provides other constructors for selecting a specific camera device, e.g., based on the
device name, or serial number.

The interface Parameters returns a parameter collection of the camera for accessing all
parameters. It is used to access the Save() and the Load() functions which allow saving or loading
of camera parameters to or from a file. This feature can be used to transfer the configuration of a
"reference" camera to other cameras.

Applicable Interfaces

GigE Vision, USB3 Vision, Camera Link

 Back to top

AW00148804000 .NET Samples

pylon SDK Samples Manual 101

4.18 ParametrizeCamera_LookupTable

This sample program demonstrates the use of the Luminance Lookup Table (LUT) feature.

Code

The Camera class is used to create a camera object that opens the first camera device found. This
class also provides other constructors for selecting a specific camera device, e.g., based on the
device name, or serial number.

The PLCamera class is used to enable and configure all parameters related to the lookup table
camera feature.

Applicable Interfaces

GigE Vision, USB3 Vision, Camera Link

 Back to top

AW00148804000 .NET Samples

pylon SDK Samples Manual 102

4.19 ParametrizeCamera_UserSets

This sample application demonstrates how to use user sets (also called "configuration sets") and
how to configure the camera to start up with the user-defined settings of user set 1.

You can also configure your camera using the pylon Viewer and store your custom settings in a
user set of your choice.

Note: Executing this sample will overwrite all current settings in user set 1.

Code

The Camera class is used to create a camera object that opens the first camera device found. This
class also provides other constructors for selecting a specific camera device, e.g., based on the
device name, or serial number.

The PLCamera class is used to demonstrate the use of the camera user sets feature.

Applicable Interfaces

GigE Vision, USB3 Vision, Camera Link, CXP

 Back to top

AW00148804000 .NET Samples

pylon SDK Samples Manual 103

4.20 PylonLiveView

This sample demonstrates the use of a GUI to enumerate attached cameras, to configure a
camera, to start and stop grabbing and to display grabbed images.

Code

The MainForm class contains the implementation of the main controls and events to be used.

When a camera device is selected in the device list, the OnCameraOpened() callback is called
and the camera device is opened.

When the One Shot button is clicked, the toolStripButtonOneShot_Click() callback is called, which
in turn calls OneShot() to start the grabbing of one image. The PLCamera class is used to select
the SingleFrame acquisition mode. The default grab strategy OneByOne is applied while an
additional grab loop thread provided by the stream grabber is used.

The grab results are delivered to the image event handler OnImageGrabbed().

When the Continuous Shot button is clicked, the toolStripButtonContinuousShot_Click() callback is
called, which in turn calls ContinuousShot() to start the grabbing of images until grabbing is
stopped. The PLCamera class is used to select the Continuous acquisition mode. The default grab
strategy OneByOne is applied while an additional grab loop thread provided by the stream grabber
is used.

The grab results are delivered to the image event handler OnImageGrabbed().

AW00148804000 .NET Samples

pylon SDK Samples Manual 104

When the Stop Grab button is clicked, the toolStripButtonStop_Click() callback is called, which in
turn calls Stop() to stop the grabbing of images.

Applicable Interfaces

GigE Vision, USB3 Vision, CXP

 Back to top

AW00148804000 .NET Samples

pylon SDK Samples Manual 105

4.21 Utility_AnnounceRemoteDevice

This sample illustrates how to discover and work with GigE Vision cameras that are behind a
router.

When a camera is behind a router, the router will prevent any broadcast device discovery
messages to pass through and reach the camera. In turn, this will usually prevent the camera from
being discovered by the pylon IP Configurator, the pylon Viewer, or a customer application.

Code

The CameraFinder class is used to discover all GigE Vision cameras that are not connected
behind a router, i.e., cameras that can be accessed by broadcast device discovery messages.

The IpConfigurator class is used to access a GigE Vision camera behind a router. For that
purpose, the AnnounceRemoteDevice() function is used, which sends a unicast device discovery
message to the specific IP address of the camera.

Applicable Interfaces

GigE Vision

 Back to top

AW00148804000 .NET Samples

pylon SDK Samples Manual 106

4.22 Utility_GrabAvi

This sample illustrates how to create a video file in Audio Video Interleave (AVI) format.

Note: AVI is best for recording high-quality lossless videos because it allows you to record without
compression. The disadvantage is that the file size is limited to 2 GB. Once that threshold is
reached, the recording stops and an error message is displayed.

Code

The Camera class is used to create a camera object that opens the first camera device found. This
class also provides other constructors for selecting a specific camera device, e.g., based on the
device name, or serial number.

The PLCamera class is used to set the region of interest and the pixel format of the camera.

The PLCameraInstance class provides a list of all parameter names available for the Camera
class instance. It is used to set the parameter MaxNumBuffer that controls the amount of buffers
allocated for grabbing.

The AviVideoWriter class is used to create and save AVI video file to the computer’s hard drive.

Applicable Interfaces

GigE Vision, USB3 Vision, CXP

 Back to top

AW00148804000 .NET Samples

pylon SDK Samples Manual 107

4.23 Utility_GrabVideo

This sample demonstrates how to create a video file in MP4 format. It is presumed that the pylon
Supplementary Package for MPEG-4 is already installed.

Note: There are no file size restrictions when recording MP4 videos. However, the MP4 format
always compresses data to a certain extent, which results in loss of detail.

Code

The Camera class is used to create a camera object that opens the first camera device found. This
class also provides other constructors for selecting a specific camera device, e.g., based on the
device name, or serial number.

The PLCamera class is used to set the region of interest and the pixel format of the camera.

The PLCameraInstance class provides a list of all parameter names available for the Camera
class instance. It is used to set the parameter MaxNumBuffer that controls the amount of buffers
allocated for grabbing.

The VideoWriter class is used to create and save MP4 video file to the computer’s hard drive.

The PLVideoWriter class provides a list of parameter names available for the video writer class. It
is used to set the quality of the resulting compressed stream. The quality has a direct influence on
the resulting bit rate. The optimal bit rate is calculated based on the input values height, width, and
playback frame. This is then normalized to the quality value range 1–100, where 100 corresponds
to the optimum bit rate and 1 to the lowest bit rate.

Applicable Interfaces

GigE Vision, USB3 Vision, CXP

 Back to top

AW00148804000 .NET Samples

pylon SDK Samples Manual 108

4.24 Utility_ImageDecompressor

This sample illustrates how to enable and use the Basler Compression Beyond feature in Basler
ace 2 GigE and Basler ace 2 USB 3.0 cameras.

This sample also demonstrates how to decompress the images using the CImageDecompressor
class.

Code

The Camera class is used to create a camera object that opens the first camera device found. This
class also provides other constructors for selecting a specific camera device, e.g., based on the
device name, or serial number.

The Configuration class is used to set the acquisition mode to a single image acquisition when the
camera is opened.

The ImageDecompressor class is used to decompress grabbed images. In this sample,
compression and decompression are demonstrated, using lossless and lossy algorithms.

The CompressionInfo class is used to fetch information of a compressed image for display.

The ImageWindow class is used to display the grabbed image on the screen.

Applicable Interfaces

GigE Vision, USB3 Vision

 Back to top

AW00148804000 .NET Samples

pylon SDK Samples Manual 109

4.25 Utility_IpConfig

This sample demonstrates how to configure the IP address of a GigE Vision camera. The
functionalities described in this sample are similar to those used in the pylon IP Configurator.

In addition, this sample can be used to automatically and programmatically configure multiple GigE
Vision cameras. As the sample accepts command line arguments, it can be directly executed, e.g.,
from a batch script file.

Code

The IpConfigurator class is used to discover all GigE Vision cameras independent of their current
IP address configuration. For that purpose, the EnumerateAllDevices() function is used.

To set a new IP address of a GigE Vision camera, the ChangeIpConfiguration() function is used.

Applicable Interfaces

GigE Vision

 Back to top

AW00148804000 .NET Samples

pylon SDK Samples Manual 110

4.26 VBGrab

This sample illustrates how to grab images and process images asynchronously.

This means that while the application is processing a buffer, the acquisition of the next buffer is
done in parallel. The sample uses a pool of buffers. The buffers are allocated automatically. Once
a buffer is filled and ready for processing, the buffer is retrieved from the stream grabber as part of
a grab result.

The grab result is processed and the buffer is passed back to the stream grabber by disposing the
grab result. The buffer is reused and refilled. A buffer retrieved from the stream grabber as a grab
result is not overwritten in the background as long as the grab result is not disposed.

AW00148804000 .NET Samples

pylon SDK Samples Manual 111

Code

The Camera class is used to create a camera object that opens the first camera device found. This
class also provides other constructors for selecting a specific camera device, e.g., based on the
device name, or serial number.

The Configuration class is used to set the acquisition mode to free running continuous acquisition
when the camera is opened.

The PLCameraInstance class provides a list of all parameter names available for the Camera
class instance. It is used to set the parameter MaxNumBuffer that controls the amount of buffers
allocated for grabbing.

The ImageWindow class is used to display the grabbed image on the screen.

Applicable Interfaces

GigE Vision, USB3 Vision, CXP

 Back to top

AW00148804000 .NET Samples

pylon SDK Samples Manual 112

4.27 VBParametrizeCamera

This sample illustrates how to read and write different camera parameter types.

For camera configuration and for accessing other parameters, the pylon API uses the technologies
defined by the GenICam standard (http://www.genicam.org). The standard also defines a format
for camera description files.

These files describe the configuration interface of GenICam compliant cameras. The description
files are written in XML and describe camera registers, their interdependencies, and all other
information needed to access high-level features. This includes features such as Gain, Exposure
Time, or Pixel Format. The features are accessed by means of low level register read and write
operations.

The elements of a camera description file are represented as parameter objects. For example, a
parameter object can represent a single camera register, a camera parameter such as Gain, or a
set of parameter values.

Code

The Camera class is used to create a camera object that opens the first camera device found. This
class also provides other constructors for selecting a specific camera device, e.g., based on the
device name, or serial number.

The PLCamera class is used to demonstrate the configuration of different camera features such as
Width, Height, OffsetX, OffsetY, PixelFormat, etc.

The PLUsbCamera class is used to configure features compatible with the SFNC version 2.0, e.g.,
the feature Gain available on USB3 Vision cameras.

Applicable Interfaces

GigE Vision, USB3 Vision, Camera Link, CXP

 Back to top

http://www.genicam.org/

AW00148804000

Revision History

Document Number Date Changes

AW00148801000 14 Jan 2019 Initial release version of this document.

AW00148802000 20 Aug 2019 Updated to version 6.0 of the pylon Camera Software Suite.

Added the Grab_UsingBufferFactory sample in the .NET Samples
chapter.

AW00148803000 21 Jan 2020 Added the following samples:

• Utility_ImageDecompressor
• Utility_InstantInterface
• Utility_IpConfig
• Utility_AnnouceRemoteDevice
• Utility_ImageDecompressor
• Utility_IpConfig

AW00148804000 2 Feb 2021 Added the GUI_SampleMultiCam sample in the C++ Samples
chapter.

Added the ParametrizeCamera_SerialCommunication sample in
the C++ Samples chapter.

Added the ImageDecompressor sample in the C samples
chapter.

Added the GUISampleMultiCam sample in the .NET Samples
chapter.

	1 Overview
	2 C++ Samples
	2.1 DeviceRemovalHandling
	2.2 Grab
	2.3 Grab_CameraEvents
	2.4 Grab_ChunkImage
	2.5 Grab_MultiCast
	2.6 Grab_MultipleCameras
	2.7 Grab_Strategies
	2.8 Grab_UsingActionCommand
	2.9 Grab_UsingBufferFactory
	2.10 Grab_UsingExposureEndEvent
	2.11 Grab_UsingGrabLoopThread
	2.12 Grab_UsingSequencer
	2.13 GUI_ImageWindow
	2.14 GUI_Sample
	2.15 GUI_SampleMultiCam
	2.16 ParametrizeCamera_AutoFunctions
	2.17 ParametrizeCamera_Configurations
	2.18 ParametrizeCamera_GenericParameterAccess
	2.19 ParametrizeCamera_LoadAndSave
	2.20 ParametrizeCamera_LookupTable
	2.21 ParametrizeCamera_NativeParameterAccess
	2.22 ParametrizeCamera_SerialCommunication
	2.23 ParametrizeCamera_Shading
	2.24 ParametrizeCamera_UserSets
	2.25 Utility_GrabAvi
	2.26 Utility_GrabVideo
	2.27 Utility_Image
	2.28 Utility_ImageDecompressor
	2.29 Utility_ImageFormatConverter
	2.30 Utility_ImageLoadAndSave
	2.31 Utility_InstantInterface
	2.32 Utility_IpConfig

	3 C Samples
	3.1 ActionCommands
	3.2 BconAdapterSample
	3.3 Chunks
	3.4 Events
	3.5 GenApiParam
	3.6 GrabTwoCameras
	3.7 ImageDecompressor
	3.8 OverlappedGrab
	3.9 ParametrizeCamera
	3.10 SimpleGrab
	3.11 SurpriseRemoval

	4 .NET Samples
	4.1 DeviceRemovalHandling
	4.2 Grab
	4.3 Grab_CameraEvents
	4.4 Grab_ChunkImage
	4.5 Grab_MultiCast
	4.6 Grab_Strategies
	4.7 Grab_UsingActionCommand
	4.8 Grab_UsingBufferFactory
	4.9 Grab_UsingExposureEndEvent
	4.10 Grab_UsingGrabLoopThread
	4.11 Grab_UsingSequencer
	4.12 GUISampleMultiCam
	4.13 ParametrizeCamera
	4.14 ParametrizeCamera_AutoFunctions
	4.15 ParametrizeCamera_AutomaticImageAdjustment
	4.16 ParametrizeCamera_Configurations
	4.17 ParametrizeCamera_LoadAndSave
	4.18 ParametrizeCamera_LookupTable
	4.19 ParametrizeCamera_UserSets
	4.20 PylonLiveView
	4.21 Utility_AnnounceRemoteDevice
	4.22 Utility_GrabAvi
	4.23 Utility_GrabVideo
	4.24 Utility_ImageDecompressor
	4.25 Utility_IpConfig
	4.26 VBGrab
	4.27 VBParametrizeCamera

